
Academic Council Meeting No. and Date: 10 / April 26,2025

Agenda Number: 03 Resolution Number: 46,47 / 3.5, 4.0

Vidya Prasarak Mandal's

Syllabus for

Programme: Bachelor of Science

Specific Programme: STATISTICS

[T. Y. B. Sc. Statistics]

Level 5.5
CHOICE BASED GRADING SYSTEM
Revised under NEP
From the Academic Year 2025-26

Preamble

The B.Sc. Statistics Programme is aimed to develop theoretical and analytical skills of the students so that they may be absorbed in the corporate world or able to pursue higher studies at the Master level in Statistics. The main objectives of the course are:

- To get introduced to some statistical concepts that are relevant in the interpretation of measurements made on individuals, and in the interpretation of statistical study materials.
- To apply their knowledge and skills to be employed and excel in Statistics professional careers and/or to continue their education in Statistics and/or related postgraduate programs.
- To get Knowledge and understanding of basic statistical methods such as sampling and collecting data, probability, distributions, Regression Analysis.
- To gain Knowledge and understanding to confidently read statistics and apply statistical methods within their working environment.
- To be capable of managing Statistics projects with consideration of the human, financial and environmental factors.
- To work effectively as a part of a team to achieve a common stated goal.
- To communicate effectively with the arrangement of audiences both technical and non-technical.
- To develop an aptitude to engage in continuing professional development.

The syllabus is aimed to achieve these above objectives. The students will be ready for the jobs available in different fields like:

- Statistician
- Analyst
- Biostatistician
- Actuaries
- Banking sector
- Machine Learning and Artificial Intelligence
- Data Analytics
- Academics
- Government organizations like NSSO, NSO, ISS, SSC etc. and many others.

PROGRAMME OUTCOMES (POs) OF BACHELOR OF SCIENCE (B.Sc.)

The Undergraduate Programs of Science are intended to cater quality education and attain holistic development of learners through the following Programme outcomes:

PO1 - Disciplinary Knowledge

Lay a strong foundation of conceptual learning in science. Instil ability to apply science in professional, social and personal life.

PO2 - Inculcation of Research Aptitude

Ignite spirit of inquiry, critical thinking, analytical skills and problem-solving approach which will

help learners to grasp concepts related to research methodology and execute budding research ideas.

PO3 - Digital Literacy

Enhance ability to access, select and use a variety of relevant information e-resources for curricular, co-curricular and extracurricular learning processes.

PO4 - Sensitization towards Environment

Build a cohesive bond with nature by respecting natural resources, encouraging eco-friendly practices and creating awareness about sustainable development.

PO5 - Individuality and Teamwork

Encourage learners to work independently or in collaboration for achieving effective results through practical experiments, project work and research activities.

PO6 - Social and Ethical Awareness

Foster ethical principles which will help in developing rational thinking and becoming socially aware citizens. Build an attitude of unbiased, truthful actions and avoid unethical behavior in all aspects of life.

Eligibility: Cleared S. Y. B. Sc. with a Statistics (Major) from any recognized/ Affiliated University can adopt for T. Y. B. Sc. with the Statistics (Major) subject.

Duration: 1 year (Including Semester V & VI)

Total Credits for the Program: 44

Starting year of implementation: 2025-26

Mode of Conduct: Offline

Discipline/Subject: Statistics

Programme Specific Outcomes:

By the end of the Programme, Learner enhances knowledge of Statistical tools, able to

- 1. Apply fundamental concepts of descriptive statistics, statistical methods, probability distributions, sampling theory, ANOVA, DOE, estimation theory, hypothesis testing, and reliability analysis to analyze, interpret, and solve real-world problems across diverse domains.
- 2. Demonstrate proficiency in using Excel, Tableau, Python, and SQL for data handling, cleaning, visualization, analysis, and reporting, enabling them to work effectively in data-driven environments.
- 3. Design and implement statistical models, including probability-based models, stochastic

- processes, regression techniques, and other inferential procedures to derive meaningful insights from data.
- 4. Apply Operations Research techniques, including linear programming, simplex method, inventory, transportation and assignment problems, and simulation models to optimize decision-making in business, industry, and management applications.
- 5. Build and evaluate basic machine learning models using Python, integrate statistical algorithms with computational approaches, and use programming skills to automate analysis and solve complex data problems.
- 6. Apply statistical techniques to vital statistics, demographic measures, public health data, life tables, and population studies, ensuring accurate interpretation and planning for social, health, and administrative applications.

Specific Programme:

Semester V

T.Y.B.Sc. (Statistics) (Major) Credits: 12

T.Y.B.Sc. (Statistics) (Major DSE) Credits: 04

T.Y.B.Sc. (Statistics) (Minor) Credits: 02

T.Y.B.Sc (Statistics) (SEC) Credits: 02

T.Y.B.Sc (Statistics) (On job Training) Credits: 02

Semester VI

T.Y.B.Sc. (Statistics) (Major) Credits: 12

T.Y.B.Sc. (Statistics) (IKS) Credits: 02

T.Y.B.Sc. (Statistics) (Major DSE) Credits: 04

T.Y.B.Sc. (Statistics) (SEC) Credits: 02

T.Y.B.Sc. (Statistics) (On job Training) Credits: 02

Assessment:

Weightage for assessments (in percentage) For all courses

Type of Course	Formative	Summative Assessment
	Assessment / IA	
Theory	40%	60%
Practical	-	100%

B. N. Bandodkar College of Science (Autonomous), Thane

	Semester V: Major		
Course Code	Course Title	No. of lectures In hrs.	Credits
25BUST5T01	Distribution Theory	30	2
25BUST5T02	Theory of Estimation	30	2
25BUST5T03	Introduction to Regression Analysis	30	2
25BUST5P01	Practical Based on 25BUST6T01	60	2
25BUST5P02	Practical Based on 25BUST6T02	60	2
25BUST5P03	Practical Based on 25BUST6T03	60	2
	Total	270	12
	Semester V: Major DSE		
Course Code	Course Title	No. of lectures In hrs	Credits
25BUST5TE1	Biostatistics	30	2
25BUST5PE1	Practical Based on 25BUST5TE1	60	2
	OR		
25BUST5TE2	Applied Statistics -I	30	2
25BUST5PE2	Practical Based 25BUST5TE2	60	2
	Total	90	4
	Semester V: Minor		
25BUST5TMN	Business Statistics	30	2
	Total	30	2
	Semester V: SEC		
25BUST5SEC	Data Science and Statistical Learning-I	15	1
	Practical Based on 25BUST5SEC	30	1
	Total	45	2
	Semester V: On Job Training	,	
25BUST5OJT	On Job Training in Statistics I	60	2
	Total	60	2
		_L	

	Semester VI: Major			
Course Code	Course Title		No. of lectures In hrs.	Credits
25BUST6T01	Stochastic Processes		30	2
25BUST6T02	Testing of Hypothesis		30	2
25BUST6T03	Optimization Techniques and Reliability		30	2
25BUST6IKS	Indian Knowledge System in Statistics		30	2
25BUST6P01	Practical Based on 25BUST6T01		60	2
25BUST6P02	Practical Based on 25BUST6T02		60	2
25BUST6P03	Practical Based on 25BUST6T03		60	2
		Total	300	14
	Semester VI: Major DS	E		
Course Code	Course Title		No. of lectures In hrs	Credits
25BUST6TE1	Industrial Statistics		30	2
25BUST6PE1	Practical's Based on 25BUST6PE1		60	2
	OR			
25BUST6TE2	Applied Statistics-II		30	2
25BUST6PE2	Practical's Based on 25BUST6TE2		60	2
		Total	90	4
	Semester VI: SEC			
25BUST6SEC	Data Science and Statistical Learning-II		15	1
	Practical Based on 25BUST6SEC		30	1
	1	Total	45	2
	Semester VI: On Job Train	ning	<u> </u>	
25BUST6OJT	On Job Training in Statistics II		60	2
	1	Total	60	2

Semester V (Statistics-Major)

Course Code: 25BUST5T01

CO1	Explain the theorems on probability and define the joint MGF.	L2
CO2	Define trinomial and multinomial distribution and study different	L1
	characteristics of distribution.	
CO3	Demonstrate key probability inequalities and Weak Law of Large	L2
	Numbers (WLLN)	
CO4	Explain order statistics and be able to find distributions of order	L2
	statistics.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	0	0
CO2	3	1	0	0	0	0
CO3	3	3	1	0	1	0
CO4	3	2	1	0	1	0

Course Code 25BUST5T01	Course Title Distribution Theory	Credits 2	No. of lectures in hours
Unit I	Unit I: Joint Moment Generating Function and Multin Distribution Bivariate Normal Distribution. Bivariate MGF: Definition and properties of Moment Generating Function (MGF) random variables of discrete and continuous type. Necessary and Sufficient of Bivariate MGF. Trinomial distribution: Definition of joint probability distribution of (X,Y) . Joint magnerating function, moments μ_{rs} where $r=0,1,2$ and $s=1$ Marginal & Conditional distributions. Their Means & Variance Correlation coefficient between (X,Y) . Distribution of the Sun Y Extension to Multinomial distribution with para $(n,p_1,p_2,\dots,p_{k-1})$ where $p_1+p_2+\dots+p_{k-1}+p_k=1$ 1. Expired for joint MGF. Derivation of: joint probability distribution of (X,Y) . Soint Moment Generation, moments μ_{rs} where $r=0,1,2$ and $s=0,1,2$. Marginal & Conditional probability distribution (X,Y) . Joint Moment Generation, moments μ_{rs} where $r=0,1,2$ and $s=0,1,2$. Marginal & Conditional probability distribution. Their Means & Variances. Correlation coefficient between the random variables. Necessary and sufficient condition for independence of X and Y	of two fficient of and noment $0, 1, 2$. iances. in $X + $ meters ression (i, Xj) .	15

	Unit II: Inequalities, Law of Large Numbers and Order Statistics	
	Inequalities:	
	Markov Inequality, Tchebyshev's Inequality, Boole's Inequality, Cauchy	
	Schwarz's Inequality, Weak Law of Large Numbers.	
	Order Statistics	
	(i) Definition of Order Statistics based on a random sample.	
Unit II	(ii) Derivation of:	15
Omt II	(a) Cumulative distribution functions of r th order statistics.	15
	(b) Probability density functions of the r th order statistics.	
	(c) Joint Probability density function of the r th and the s th order statistics	
	$(r \leq s)$	
	(d) Joint Probability density functions of all n order statistics.	
	(e) Distribution of Maximum observation (nth order statistic) and Minimum	
	observation (first order statistics) in case of uniform and Exponential	
	distribution.	
	(f) Probability density function of the difference between r th and s th order	
	statistic (r <s) and="" case="" distribution.<="" exponential="" in="" of="" td="" uniform=""><td></td></s)>	

- Biswas, S., 1991. *Topics in Statistical Methodology*. 1st ed. New Delhi: Wiley Eastern Ltd.
- Chandra, T.K. & Chatterjee, D., 2005. *A First Course in Probability*. 3rd ed. New Delhi: Narosa Publishing House.
- Feller, W., 1968. An Introduction to Probability Theory and Its Applications, Volume 1. 3rd ed. New York: Wiley Eastern Limited.
- Gupta, S.C. & Kapoor, V.K., 2014. Fundamentals of Mathematical Statistics. 11th ed. New Delhi: Sultan Chand & Sons.
- Hogg, R.V. & Craig, A.T., 1995. *Introduction to Mathematical Statistics*. 5th ed. Englewood Cliffs, NJ: Prentice Hall.
- Hogg, R.V. & Tanis, E.A., 1993. *Probability and Statistical Inference*. 4th ed. New York: Macmillan Publishing Company.
- Kapur, J.N. & Saxena, H.C., 2010. *Mathematical Statistics*. 15th ed. New Delhi: S. Chand and Company.
- Mood, A.M., Graybill, F.A. & Boes, D.C., 1974. *Introduction to the Theory of Statistics*. 3rd ed. New York: McGraw-Hill.
- Rohatgi, V.K. & Saleh, A.K.M.E., 2015. An Introduction to Probability and Statistics. 3rd ed. Hoboken, NJ: John Wiley & Sons.

Course Code: 25BUST5T02

CO1	Explain the key properties of a good estimator: unbiasedness, consistency,	L2
	efficiency, and sufficiency.	
CO2	Estimate estimators using the MLE and MOM method.	L5
CO3	Develop a basic understanding of Bayesian estimation methods, incorporating	L6
	prior distributions, posterior distributions and likelihood functions.	
CO4	Estimate confidence intervals for different distributions and normal distribution	L6
	in different scenarios.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	0	2	1
CO2	3	3	3	0	2	1
CO3	3	3	2	0	2	1
CO4	3	3	3	0	2	1

Course Code	Course Title	Credits	No. of
25BUST5T02	Theory of Estimation	2	lectures in hours
	Point Estimation and Methods of Point Estimation		
	Notion of a Parameter and		
	Parameter Space.		
	Problem of Point estimation.		
	Definitions: Statistic, Estimator and Estimate. Properties of a good		
	estimator :		
	Unbiasedness: Definition of an unbiased estimator,		
	Illustrations and examples.		
	Consistency: Definition of Consistency, Sufficient condition for		
	consistency (Without proof) Illustrations	_	
	Sufficiency: Concept and Definition of sufficient statistic. Neyma		15
Unit I	Factorization theorem (without proof), Exponential family of prol distributions and sufficient statistics.	oability	
	Relative efficiency of an estimator & illustrative examples.		
	Minimum variance unbiased estimator (MVUE) and Cramer	Rao	
	Inequality:		
	Definition of MVUE, Uniqueness property of MVUE (proof).,		
	Information function, Regularity conditions.		
	Cramer-Rao lower bound (CRLB).		
	Method of Maximum Likelihood Estimation (M.L.E.):		
	1. Definition of likelihood as a function of unknown parametrandom sample from: Discrete distribution & Continuous	ter for a	
	distribution.		
	2. Derivation of Maximum likelihood estimator (M.L.E.) for	•	
	parameters of Standard distributions (case of one and two		
	unknown parameters).		
	3. Properties of MLE (without proof).		
	Method of Moments:		
	1. Derivation of Moment estimators for standard distribution	S	
	(case of one and two unknown parameters)		
	2. Illustrations of situations where MLE and Moment Estimators are distinct and their comparison using mean		
	Square error.		
	Method of Minimum Chi-square and Modified Minimum Chi	i- Square	

	Bayesian Estimation Method & Interval Estimation	
	Bayes Estimation:	
	1. Prior distribution, Posterior distribution	
	2. Loss function, Risk function	
	3. Types of Loss function: Squared error Loss function (SELF), Absolute	
	error Loss function (AELF)	
	4. Bayes risk.	
Unit II	5. Bayes method of finding Point estimator (assuming SELF)	15
Unit II	Examples: (i) Binomial- Beta, (ii) Poisson- Gamma, (iii) Binomial-	13
	Uniform, (iv) Normal-Normal, (v) Exponential-Exponential, (vi) Poisson-	
	Exponential	
	Interval Estimation:	
	1. Concept of confidence interval & confidence limits.	
	2. Definition of Pivotal quantity and its use in obtaining confidence limits.	
	3. Derivation of $100(1-\alpha)$ % equal tailed confidence interval for:	
	a) The population mean: μ , $\mu_1 = \mu_2$ (population variance known/ unknown)	
	b) The population variance: σ^2 , $\frac{\sigma_1^2}{\sigma_2^2}$ (Normal distribution)	
	Confidence interval for the parameters of Binomial, Poisson and	
	Exponential distributions.	

- Arora Sanjay and BansiLal (1989): New Mathematical Statistics, SatyaPrakashan, New Market, New Delhi,5
- B. K. Kale, K. Muralidharan (2016): Parametric Inference: An Introduction, Narosa Publishing House
- Gupta S.C., Kapoor V. K.(2014): Fundamentals of Mathematical Statistics; Eleventh Edition; Sultan Chand & Sons.
- Hoel P.G.(1966): Introduction to Mathematical Statistics; Fourth Edition; John Wiley & Sons Inc.
- HoggR.V., Craig A.T. (2012): Introduction to Mathematical Statistics, Seventh Edition; Collier McMillan Publishers.
- HoggR.V., TannisE. A.(2014): Probability and Statistical Inference, Nineth Edition; Collier McMillan Publishers.
- Kapur J.N.,Saxena H. C.(2010): Mathematical Statistics; Fifteenth Edition; S. Chand & Company Ltd.
- Manoj Kumar Srivastava, Abdul Hamid Khan, Namita Srivastava (2014): Statistical Inference: Theory of Estimation, PHI learning
- Miller I., Miller M.& Freund J.E. (1999) John E. Freund's Mathematical Statistics, Sixth Edition: Pearson Education Inc.
- Rohatgi, V. K, Ehsan Saleh A.K. Md.: An introduction to Probability Theory and Mathematical Statistics, Second Edition, Wiley series in Probability and Statistics.
- U. J. Dixit (2016): Examples in Parametric Inference in R, First Edition, Springer

Course Code: 25BUST5T03

CO1	Explain the concepts of the fitting of regression models and estimation of parameters using least square method.	L2
CO2	Extend the regression concept to multiple variables and interpret logistics	L2
	models.	
CO3	Analyze & compare residual diagnostics and apply corrective measures	L4
CO4	Build the appropriate model and estimate the parameters.	L3

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	0	2	2
CO2	3	3	3	0	2	2
CO3	3	3	3	0	3	2
CO4	3	3	3	0	3	2

Course Code	Course Title	Credits	No. of		
25BUST5T03	Introduction to Regression Analysis	2	lectures in hours		
	Unit I: Linear Regression Models and Introduction to Logistic	2			
	Regression				
	1.Simple linear regression model		15		
	Review of Simple linear Regression Model: $Y = \beta 0 + \beta 1X + \varepsilon$				
	2. Multiple linear regression model				
Unit I	Assumptions of the models, Derivation of ordinary least square (OLS) estimators of regression coefficients for simple and multiple regression models, Properties of least square estimators (without proof), Estimation				
	of σ^2 , Coefficient of determination R ² and adjusted R ² , procedure overall				
	significance of the models, Significance of individual coefficients,				
	Confidence intervals for the regression coefficients, testing normality of				
	data Residual analysis: Standardized residuals, Studentized residuals,	recidual			
	plots with R- software, Introduction to Logistics Regression, estimparameters and its applications				

Unit II	Unit II: Validity of Assumptions and Model Building Autocorrelation: Concept and detection using Durbin Watson Test, Interpretation of output produced by DW-test function in R, Heteroscedasticity: Concept and detection using Breusch – Pagan-Godfrey Test, Interpretation of output produced by BP test function in R, Multicollinearity: Concept and detection Variance Inflation Factor(VIF),	
	Interpretation Of Output produced by mc test function in R, Consequences of using OLS estimators in presence of Autocorrelation, Heteroscedasticity and Multicollinearity, and Brief introduction to ridge regression.	15

- Chatterjee S. and Hadi A.S.(2012): Regression Analysis by Examples, 5th Edition, Wiley.
- Draper, N. R. and Smith, H. (1998), Applied Regression Analysis (John Wiley), Third Edition.
- Hosmer, D.W and lameshow, S.(1989). Applied Logistic Regression (Wiley).
- Kleinbaum G. and Klein M.(2011): Logistic Regression, IIIrd Edition a self-learning text, Springer.
- Montgomery, D. C., Peck, E. A. and Vining, G. G. (2003), Introduction to Linear Regression Analysis (Wiley).
- Neter, J., W., Kutner, M. H.; Nachtsheim, C.J. and Wasserman, W.(1996), Applied Linear Statistical Models, fourth edition, Irwin USA.

Course Code: 25BUST5P01

CO1	Find the bivariate MGF of random variables	L3
CO2	Solve problem based on trinomial and multinomial distribution.	L1
CO3	Solve problem based on Bivariate Normal Distribution.	L3
CO4	Solve the problem based on ordered statistics and different inequalities.	L3

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	0	0
CO2	3	1	0	0	0	0
CO3	3	2	1	0	1	0
CO4	3	3	1	0	1	0

	Course Title	
Course Code		Credits
25BUST5P01	Practicals Based on 25BUST5T01	2
5.1.1	Bivariate Moment Generating Function -I	
5.1.2	Bivariate Moment Generating Function -II	
5.1.3	Trinomial Distribution	
5.1.4	Multinomial Distribution	
5.1.5	Bivariate Normal Distribution-I	
5.1.6	Markov Inequality	
5.1.7	Tchebyshev's Inequality	
5.1.8	Boole's Inequality	
5.1.9	Cauchy Schwarz's Inequality	
5.1.10	Weak Law of Large Numbers	
5.1.11	Order statistics-I	
5.1.12	Order statistics-II	

Course Code: 25BUST5P02

CO1	Find minimum variance unbiased estimator and Minimum Variance Bound	L1
	Unbiased Estimator	
CO2	Estimate parameters using MLE and MOM method.	L5
CO3	Estimate parameters using Bayes' Estimation.	L5
CO4	Construct confidence intervals for different cases of normal distribution and some	L3
	standard distributions.	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	1	0	3	1
CO2	3	3	2	0	3	1
CO3	3	3	2	0	3	1
CO4	3	3	2	0	3	1

	Course Title	
Course Code		Credits
25BUST5P02	Practical Based on 25BUST5T02	2
5.2.1	Unbiased Estimator	
5.2.2	Consistent and Sufficient Estimator	
5.2.3	Minimum Variance Unbiased Estimator	
5.2.4	Minimum Variance Bound Unbiased Estimator	
5.2.5	Maximum Likelihood Estimator	
5.2.6	Method of Moments	
5.2.7	Method of minimum chi square and minimum modified chi square	
5.2.8	Baye's Estimation I	
5.2.9	Baye's Estimation II	
5.2.10	Confidence Interval I	
5.2.11	Confidence Interval II	
5.2.12	Practical using R software	

Course Code: 25BUST5P03

CO1	Apply linear Regression models to real life data	L3
CO2	Apply simple linear regression models for bivariate and multivariate data using R	L3
CO3	Analyze and interpret Results after applying regression models to data	L4
CO4	Evaluate and verify the assumptions for applied regression models	L5

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	0	3	1
CO2	3	3	3	0	3	1
CO3	3	3	3	0	3	1
CO4	3	3	3	0	2	1

	Course Title	
Course Code 25BUST5P03	Practical Based on 25BUST5T03	Credit s
5.3.1	Fundamentals of R -I	
5.3.2	Fundamentals Of R -II	
5.3.3	Fundamentals of R -III	
5.3.4	Simple Linear Regression-II	
5.3.5	Multiple Linear Regression-I	
5.3.6	Multiple Linear Regression-II	
5.3.7	Simple Linear Regression using R-I	
5.3.8	Simple Linear Regression using R -II	
5.3.9	Multiple Linear Regression using R -I	
5.3.10	Multiple Linear Regression using R -I	
5.3.11	Logistic Regression using R-I	
5.3.12	Logistic Regression using R-II	
5.3.13	Ridge Regression using R	
5.3.14	Validity of Assumptions -I	
5.3.15	Validity of Assumption- II	

Semester V (Statistics-Major DSE)

Course Code: 25BUST5TE1

CO1	Explain the principles of different epidemic models and their assumptions and	L4
	critically assess the effectiveness of various epidemic models based on their	
	assumptions, strengths, and limitations.	
CO2	Design dose-response analysis, and apply statistical tests (e.g., analysis of variance,	L6
	regression models) to determine the efficacy of treatments or substances.	
CO3	Demonstrate the principles of clinical trial design, including randomization,	L2
	blinding, sample size determination, and the ethical considerations involved.	
CO4	Explain the concepts of bioequivalence, such as pharmacokinetic parameters	L2
	(AUC, C _{max}) and its importance in regulatory approval of generic drugs.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	0	2	3
CO2	3	3	2	0	2	3
CO3	3	3	2	1	3	3
CO4	3	3	2	0	2	3

Course Code 25BUST5TE1	Course Title Cred Biostatistics 2	No. of lectures in hours
Unit I	 Epidemic Models and Bioassays The features of Epidemic spread. Definitions of various terms involved. Simple mathematical models for epidemics: Deterministic model without removals (for 'a introductions), Carrier model (Without Proof). Chain binomial models. Reed-Frost and Greenwood models. Distribution of individual chains and total numb of cases. Maximum likelihood estimator of 'p' and its asymptotic variance for households of sizes up to 3. Meaning and scope of bioassays. Relative potency. Direct assays. Fieller's Theorem.(Statement only) Indirect assays. Dose-response relationship. Conditions of similarity and Monotony. Linearizing transformations. Parallel line assays. Symmetrical (2, 2) parallel line assay Point Estimate and Interval Estimate of Relative potency Quantal Response assays. Tolerance distribution. Median effective dose ED50 and LD50. Probit and Logit analysis 	er 15 et of ys.

Unit II	Clinical Trials and Bioequivalence 1) The need and ethics of clinical trials. Common terminology used in clinical trials. Overview of phases (I-IV). Introduction to ICH E9 guidelines, Study Protocol. 2) Concept of: Case record/Report form, Blinding (Single/Double) Randomized controlled (Placebo/Active controlled), Study Designs (Parallel, Cross Over). Types of Trials: Inferiority, Superiority and Equivalence, Multicentric. 3) Statistical tools: Analysis of parallel Design using Analysis of Variance. Concept of odds ratio. 4) Definitions of Generic Drug product. Bioavailability, Bioequivalence, Pharmacokinetic (PK) parameters C _{max} , AUCt, AUC₀-∞, T _{max} , Kel, T _{half} . 5) Designs in Bioequivalence: Parallel, Cross over (Concept only). Advantages of Crossover design over Parallel design. 6) Analysis of Parallel design using logarithmic transformation (Summary statistics, ANOVA and 90% confidence interval). 7) Confidence Interval approach to establish bioequivalence	15
	(80/125 rule).	

- Bailey N.TJ.: The Mathematical theory of infectious diseases, Second edition, Charles Griffin and Co. London.
- Daniel Wayne W.: Biostatistics. A Foundation for Analysis in the Health Sciences, 7thEdition, Wiley Series in Probability and Statistics.
- Das M.N. and Giri N.C.: Design and Analysis of Experiments, Second edition, Wiley Eastern.
- Finney D.J.: Statistical Methods in Biological Assays, First edition, Charles Griffin and Co. London.
- Fleiss J. L. The Design and Analysis of Clinical Experiments, Second edition, Wiley and Sons.
- Friedman L. M., Furburg C., Demets D. L.: Fundamentals of Clinical Trials, First edition, Springer Verlag.
- Hogg R.V., Craig A.T.: Introduction to Mathematical Statistics, Fourth Edition; Collier McMillan Publishers.
- Sanford Boltan and Charles Bon: Pharmaceutical Statistics, Fourth edition, Marcel Dekker Inc.
- Shein-Chung-Chow; Design and Analysis of Bioavailability & Bioequivalence studies, Third Edition, Chapman & Hall/CRC Biostatistics series.
- Wayne W. Daniel: Biostatistics: Basic Concepts and Methodology for the Health Sciences, 10th edition, ISV
- Zar Jerrold H.: Biostatistical Analysis, Fourth edition, Pearson's education.

Course Code: 25BUST5PE1

CO1	Find number of susceptible and infective and Estimate probabilities using chain	L5
	binomial models.	
CO2	Design direct assays, parallel line assays and quantal response assays by various methods.	L6
CO3	Apply various statistical methods in clinical trials.	L3
CO4	Find various pharmacokinetics parameters.	L2

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	2	1
CO2	3	3	1	0	2	1
CO3	3	2	2	1	2	1
CO4	3	3	2	0	2	1

	Course Title	
Course Code 25BUST5PE1	Practical Based on 25BUST5TE1	Credits 2
Practical No.	Name of the Practical	
5.4.1	Epidemic Models (Number of Susceptibles and Infectives)	
5.4.2	Estimation of Probability of number of Infectives	
5.4.3	Estimation of S.E. of Probability of number of Infectives	
5.4.4	Direct Assays	
5.4.5	Parallel Line Assays	
5.4.6	Quantal Response Assays	
5.4.7	Correlation	
5.4.8	Clinical Trials-I	
5.4.9	Clinical Trials-II	
5.4.10	Sample Size	
5.4.11	Bioequivalence	
5.4.12	Practical using R software	

Course Code: 25BUST5TE2

CO1	Explain the concepts of decision making environments in the	L2
	business and Apply various decision making techniques	
CO2	Summarize concepts of queuing theory and apply in real life	L2
	situations.	
CO3	Define the principles and concepts of time series modeling	L1
CO4	Apply various time series analysis techniques and Evaluate the	L3
	stationarity of time series data and implement appropriate	
	transformations if necessary.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	2	1
CO2	3	2	2	0	2	1
CO3	3	2	2	0	2	1
CO4	3	3	2	0	2	1

Course Code 25BUST5TE2	Course Title Applied Statistics-I	Credits 2	No. of lectures in hours
Unit I	Unit I: Decision theory and Queuing Theory Decision theory Decision making under uncertainty: Laplace Maximax (Minimin) criterion, Maximin (Minimax) Hurwitz criterion, Minimax Regret criterion. Decisio under risk: Expected Monetary Value criterion, Opportunity Loss criterion, EPPI, EVPI. Decision tree Queuing Theory Basic elements of the Queuing model. Roles of the Poisson and Exponential distributions. Derivation of Steady state probabilities for birth process. Steady state probabilities and various characteristics for the following models: (i)(M/M/1):(GD/∞/∞) (ii) (M/M/1):(GD/N/(iii)(M/M/c):(GD/∞/∞))	eriterion, n making Expected analysis. and death average	15
 Unit II: Time Series Analysis Definition of time series. Its components. Models of time series. Estimation of trend by: i) Freehand curve method ii) Method of semi average iii) Method of Moving average iv) Method of least squares (linear trend only) 			15

 Estimation of seasonal component by i) method of simple average, ii) Ratio to moving average, iii) Ratio to trend method. Concept of stationary time series (graphical and DF test, Methods of converting non-stationary time series into stationary time series by differencing method and 	
de trending method.	

- Brockwell, P. J. and Davis, R. A. (2003): Introduction to Time Series Analysis, Springer
- Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci (2011), Introduction to Time Series Analysis and Forecasting, John Wiley & Sons
- Ferguson, T. S. (1967): Mathematical Statistics: A decision theoretic approach. Academic Press.
- Fuller, W. A. (1996): Introduction to Statistical Time Series, 2nd Ed. Wiley.
- Gupta, S. C. and Kapoor, V. K. (2014), Fundamentals of Applied Statistics, Fourth Edition, Sultan Chand and Sons Publishers, New Delhi.
- Kantiswarup, P.K.Gupta, Manmohan: Operations Research, Twelfth edition, Sultan Chand & sons.
- Paul S.P. Cowpertwait and andrew V. Metcalfe (2009), Introductory Time Series with R, Springer
- Sharma S. D.: Operations Research, Eighth edition, Kedarnath Ramnath & Co.
- Shumway, R. H. and Stoffer, D. S. (2010): Time Series Analysis & Its Applications, Springer.
- Taha, H. A. (2010): Operations Research: An introduction. Pearson. 9th Edition.
- Vora N. D.: Quantitative Techniques in Management, Third edition, McGraw Hill

Course Code: 25BUST5PE2

CO1	Identify decision making environments and apply statistical methods of taking	L3
	optimum decisions	
CO2	Analyze and classify different types queuing models.	L4
CO3	Estimate future time series values by trends, and different seasonal components.	L5
CO4	Apply differencing and detrending methods to convert non-stationary time series	L3
	into stationary time series.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	0	2	1
CO2	3	3	2	0	2	1
CO3	3	3	2	0	2	1
CO4	3	3	2	0	2	1

Course Code 25BUST5PE2	Course Title Practical Based on 25BUST5TE2 Cred 2	lits
Practical No.	Name of the Practical	
5.4.1	Decision Theory-I	
5.4.2	Decision Theory-II	
5.4.3	Decision Theory-III	
5.4.4	Decision Tree	
5.4.5	Queuing Theory -I	
5.4.6	Queuing Theory -II	
5.4.7	Queuing Theory -III	
5.4.8	Estimation of Trend	
5.4.9	Exponential Smoothing	
5.4.10	Estimation By Seasonal Component	
5.4.11	Time Series (Stationarity)-I	
5.4.12	Time Series (Stationarity)-II	

Semester V (Statistics-Minor)

Course Code: 25BUST5TMN

CO1	Explain the concepts of Interests and annuities in finance	L2
CO2	Apply the mathematical methods in the area of Loan	L3
CO3	Explain the concepts of mutual funds and shares mathematically	L2
CO4	Illustrate the concepts of NAV in case of mutual funds	L2

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	2	1
CO2	3	2	2	0	2	0
CO3	3	2	2	0	2	0
CO4	3	3	2	0	2	0

Course Code 25BUST5TMN	Course Title Business Statistics	Credits 2	No. of lectures in hours
Unit I	Unit I: Interest and Annuity: Interest: Simple Interest, Compound Interest (Nominal & Forest), Annuity: Annuity Immediate and its Present value. Equated Monthly Installment (EMI) using reduce method & amortization of loans. Problems based on these to the second	value, Future cing balance	
Unit II	Unit II: Shares and Mutual Funds: Shares: Concept of share, face value, market value, div shares, preference shares, bonus shares. Simple examples. No Simple problems on calculation of Net income after consoload, dividend, change in Net Asset Value (N.A.V.) a Problems based on these topics.	Mutual Funds: sidering entry	15

Reference Books:

- Business Statistics, Gupta S.P, Gupta M.P., Sultan Chand & Sons, 2017.
- Mathematics for Economics and Finance Methods and Modelling by Martin Anthony and Norman Biggs, Cambridge University Press, Cambridge low-priced edition, 2000

Semester V (Statistics-SEC)

Course Code: 25BUST5SEC

CO1	Explain the core concepts, life cycle, and real-world applications of Data Science	L2
	along with the roles of Data Scientist, Data Analyst, and ML Engineer	
CO2	Apply data preprocessing, model evaluation, and machine learning techniques to	L3
	analyze datasets using classification algorithms and optimize model performance.	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	1	1
CO2	3	3	3	0	2	1

Course Code 25BUST5SEC	Course Title Data Science and Statistical Learning-I	Credits 1	No. of lectures in hours
Unit I	Data Science Introduction to Data Science, Data Science life cycle, Applic Real-world Use Cases, The Data Science Workflow, Rescientist vs Data Analyst vs ML Engineer Data Preprocessing Data Cleaning – Data Integration and Transformation – Data – Data Discretization, Outlier analysis, Testing and Training, Errors Model Evaluation & Optimization Train-Test Split & Cross-Validation, Feature Select Dimensionality Reduction (PCA), Evaluation Metrics for cla (Accuracy, Precision, Recall, F1-Score, ROC Curve), In Metrics for Regression (MAE, MSE, RMSE, Hyperparameter Tuning (Grid Search, Random Search), Over Underfitting (Bias-Variance Tradeoff), Model Evaluation Visualization – Residual Plot – Distribution Plot, Generalizar Ridge and Lasso Regression Introduction to Learning Methods: Supervised and unsupervised learning techniques, Associa Correlations- Frequent Itemsets, Closed Itemsets, and A Rules, Apriori Algorithm, FP-Growth, What Is Classification regression, Types of classifications and regression, different classification Models: Decision tree, Naïve Bayes (Bayesian Classification), Neura Logistic regression, k-Nearest-Neighbor, SVM, Random For	Reduction Statistical tion and ssification Evaluation RMSLE), erfitting vs ion using tion Error, tions, and association n? What is be between	15

Reference Books:

- Bhatnagar, S. (2020). Machine learning for decision makers. BPB Publications.
- Chakraborty, B., & Roy, A. (2020). Artificial intelligence and machine learning. PHI Learning.
- Jain, P. (2018). Machine learning: Step-by-step guide for beginners. BPB Publications.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (1st ed.), New York, Springer

- Prasad, B. (2021). Fundamentals of machine learning. Wiley India.
- Raj, M. (2019). Introduction to machine learning. Oxford University Press India.
- Ramesh, K., & Vishnu, P. (2019). Machine learning techniques and applications. McGraw Hill Education India.
- William, P., Sakhare, N. N., & Pardeshi, D. B. (2023). Machine Learning. Nirali Prakashan.

Course Code: 25BUST5SEC

CO3	Apply data preprocessing techniques including cleaning, transformation, and outlier detection to prepare real-world datasets for statistical modeling and machine learning.	L3
CO4	Build, implement, and evaluate supervised classification models such as Decision	L6
	Tree, Naïve Bayes, k-NN, Random Forest, SVM, and Logistic Regression using	
	appropriate performance metrics.	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO3	3	2	3	0	2	1
CO4	3	3	3	0	2	1

Course Code 25BUST5SEC	Course Title Practical Based on Data Science and Statistical Learning-I	Credits 1
Practical No.	Name of Practical	
5.5.1	Data Cleaning, Transformation & Outlier Detection	
5.5.2	Train-Test Split & Cross-Validation	
5.5.3	Classification & Regression Model Evaluation	
5.5.4	Implement SVM and Decision Tree using Python	
5.5.5	Implement Logistic Regression and Naïve Bayes using Python	
5.5.6	Implement k-NN and Random Forest using Python	

Semester V (Statistics-OJT)

Course Code: 25BUST5OJT
Course Title: On Job Training in Statistics I

CO1	Extend subject knowledge and give exposure to real-life statistical applications,	L2
	industrial practice and work place culture.	
CO2	Develop competencies in data collection, documentation, analysis and reporting	L6
CO3	Build professional behavior, communications skills, teamwork and ethical	L3
	responsibility in industry	
CO4	Analyze experiences, interpret and create reports, presentations reflecting	L4
	industry exposure.	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	3	2
CO2	3	3	3	2	3	3
CO3	3	3	3	2	3	3
CO4	3	3	3	2	3	3

Semester VI (Statistics-Major)

Course Code: 25BUST6T01

CO1	Classify stochastic processes (SPs) based on state space and time domain,	L2
	focusing on Markov chains	
CO2	Explain Chapman-Kolmogorov equation First time passage time	L2
	distribution and Ergodic theorem.	
CO3	Define Poisson processes and its distribution,	L1
CO4	Explain the postulates and derive the difference-differential equations for	L2
	birth and death processes.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	1	0
CO2	3	2	1	0	0	0
CO3	3	1	1	0	0	0
CO4	3	2	1	0	1	0

Course Code 25BUST6T01	Course Title Stochastic Processes	Credits 2	No. of lectures in hours
Unit I	Markov Chain Introduction to stochastic Processes (SP's), Classification of SP's accesstate space & time domain. Markov chain, countable state Mark construction and calculation of n step transition probability matrix & Conditional probability, unconditional probability with initial disconditional probabilities and states, First time passage time distribution (Without Proof), stability of chain, Ergodic theorem (Without Proof). Limiting Probabilities and distribution, examples of various stochastic processes.	tov chain, it its limit. stribution, or various of Markov	
Unit II	Poisson, Birth and Death Processes Poisson process, properties of Poisson process and related distributed and difference differential equations for :(i)Pure birth (ii)Poisson process with initially 'a' members, for a =0 and a >0, (iii)Y process, (iv)Pure death process, (v)Death process with $\mu_n = \mu$, (vi) Deawith $\mu_n = n\mu$, (vii) Birth and Death process, (viii)Linear growth Derivation of $P_n(t)$, mean and variance wherever applicable. (State its variances)	n process, Yule Furry th process th model.	13

Reference book

- Adke, S. R. and Manjunath, S.M. (1984) An Introduction to finite Markov Processes, Wiley Eastern.
- Bhat, B. R. (2000) Stochastic Models: Analysis and Applications, New Age International, India.

- Cinlar E.(1975) Introduction to Stochastic Process, Prentice Hall.
- Feller, W.(1968) Introduction to Probability and its Applications, (Vol.1) Wiley Eastern.
- Harris, T.E. (1963). The Theory of Branching Processes, (Springer-Verlag).
- Hoel, P.G., Port, S. C. and Stone, C. J. (1972) Introduction to Stochastic Processes, Houghton Miffin & Co.
- Jagers, P. (1974) Branching Processes with Biological Applications, Wiley.
- Karlin & Taylor, A. (1975) First Course in Stochastic Process, (Vol.1) Academic Press.
- Madhira, S., & Deshmukh, S. (2003): Introduction to Stochastic processes using R, Springer.
- Medhi, J. (1994) Stochastic Processes, Wiley Eastern.
- Parzen E. (1962) Stochastic Process, Holden-Pay.
- Ross, S. (2005) Introduction to Probability Models, 6th Ed. Academic Press.
- Srinivas and Mehta (1976) Stochastic Processes, Tata McGraw Hill, New Delhi.
- Taylor and Karlin (1984) An Introduction to Stochastic Modeling, Academic Press.

Course Code: 25BUST6T02

CO1	Analyze the properties of MP and UMP tests, such as size and power, and their application to different distributions and test scenarios.	L4
CO2	Relate the general procedure of performing an LRT, including computing the likelihood functions for both the null and alternative hypotheses.	L2
CO3	Explain the concept and working principle of SPRT, including the process of	L5
	sequentially collecting data and stopping when a decision is made.	
CO4	Design a non-parametric test plan for a given hypothesis test problem where assumptions of parametric tests are not met.	L6
	assumptions of parametric tests are not met.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	0	2	0
CO2	3	3	2	0	2	0
CO3	3	2	2	0	2	1
CO4	3	3	3	0	2	1

Course Code 25BUST6T02	Course Title Testing of Hypothesis	Credits 2	No. of lectures in hours
	Uniformly Most Powerful Test		
	1) Problem of testing hypotheses.		
Unit I	2) Definitions and illustrations of i) Simple hypothesis ii) Co hypothesis iii) Null Hypothesis iv) Alternative Hypothesis v hypothesis vi) Critical region vii) Type I and Type II err Level of significance ix) p-value x) Size of the test xi) Power of a test.	Test of ors viii)	15
	3) Definition of the most powerful test of size α for a simple hy against a simple alternative hypothesis. Neyman fundamental lemma (Without Proof). Randomized test	•	
	4) Definition, Existence and Construction of Uniformly most p (UMP) test.	owerful	

	Sequential Probability Ratio Test and Non-Parametric Tests Sequential test procedure for testing a simple null hypothesis against a simple alternative hypothesis. Its comparison with fixed sample size (Neyman-Pearson) test procedure.	
Unit II	Definition of Wald's SPRT of strength (α, β). Problems based on Bernoulli, Binomial, Poisson, Normal & Exponential distributions. Need for non-parametric tests. Distinction between a parametric and a non-parametric test. Concept of a distribution free statistic.	15
	Single sample and two sample Nonparametric tests. (i) Sign test (ii) Wilcoxon's signed rank test (iii) Median test (iv) Mann–Whitney test (v) Run test (vi) Fisher exact test (vii) Kruskal -Wallis test (viii) Friedman test	

- B. K. Kale, K. Muralidharan (2016): Parametric Inference: An Introduction, Narosa Publishing House
- Daniel W.W (1978).: Applied Non-Parametric Statistics, First edition Boston-Houghton Mifflin Company.
- Gupta S.C. and Kapoor V.K (2014). : Fundamentals of Mathematical Statistics, Eleventh edition New Delhi S. Chand & Company Ltd.
- Hogg R.V. and Craig A.T (2020): Introduction to Mathematical Statistics, Eighth edition London Macmillan Co. Ltd.
- Hogg R.V. and Tanis E. A (2019). : Probability and Statistical Inference, Third edition Delhi Pearson Education.
- Lehmann, E. L. and Romano, J. P. (2005): Testing Statistical Hypothesis, Springer. 3 rd Edition.
- Mood, F. Graybill & D. Boes(1978): Introduction to the theory of Statistics
- Rao, C. R. (2002): Linear Statistical Inference and its applications, Second Edition Wiley Series in Probability and Statistics.
- Rohtagi, V. K. and A.K.M.AD. Ehsanes Saleh (2001): An Introduction to Probability and Statistics. John Wiley. Second Edition.
- Sanjay Arora and BansiLal (1989): New Mathematical Statistics, SatyaPrakashan, New Market, New Delhi, 5.
- Sidney Siegal& N John Castellan Jr. (1988): Non parametric test for behavioral sciences
- U. J. Dixit (2016): Examples in Parametric Inference in R, First Edition, Springer
- Wald A. (1947): Sequential Analysis, First edition New York John Wiley & Sons

Course Code: 25BUST6T03

CO1	Understand the importance and challenges of inventory management.	
CO2	Develop the ability to analyze and optimize inventory systems using mathematical	L3
	models and algorithms.	
CO3	Understand the different policies for replacement of items that deteriorate over	
	time and those that fail completely, including individual and group replacement	
	policies.	
CO4	Develop the ability to conduct post optimality sensitivity analysis to evaluate the	L3
	impact of changes on the optimal solution and the feasibility of the problem.	

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	0	2	1
CO2	3	3	2	0	2	1
CO3	3	3	2	0	2	1
CO4	3	3	3	0	2	1

Course Code 25BUST6T03	Course Title Optimization Techniques and Reliability	Credits 2	No. of lectures in hours
	UNIT I : Inventory Control Introduction to Inventory Problem		
Unit I	Deterministic Models: Single item static EOQ models for a. Constant rate of demand with instantaneous replenishment, and without shortages. b. Constant rate of demand with uniform rate of replenishmen and without shortages. c. Constant rate of demand with instantaneous replenishment without shortages, with at most two price breaks. Probabilistic models: Single period with Instantaneous demand (discrete and continuous) without setup cost	t, with	15
Unit II	Uniform demand (discrete and continuous) without setup cost UNIT II: Replacement Problem and Reliability: Replacement of items that deteriorate with time and value of mode (i) remains constant, (ii) changes with time. Replacement of items that fail completely :Individual replaced Group Replacement policies(without proof) Concept of reliability, Hazard-rate. Bathtub curve. Fail distributions: (i)Exponential,(ii)Gamma,(iii)Weibull, Definiting increasing (decreasing) failure rate. Mean Time to Failure of (MTTF). System Reliability. Reliability of (i) series (ii) parallel independent components having exponential life distributions.	ement and ture time tions of a system	15

- BarlowR.E.and Prochan Frank: Statistical Theory of Reliability and Life Testing Reprint, First. Edition, Holt, Reinhart and Winston.
- Kanti swarup, P. K. Gupta, Manmohan: Operations Research, Twelfth edition, Sultan Chand & sons
- Mann N. R., Schafer R. E., Singapurwalla N. D.: Methods for Statistical Analysis of Reliability and Life Data. First edition, John Wiley & Sons.Sharma S. D.: Operations Research, Eighth edition, Kedarnath Ramnath & Co.
- Taha Hamdy A.: Operations Research: Eighth edition, Prentice Hall of India Pvt. Ltd.
- Vora N. D.: Quantitative Techniques in Management, Third edition, McGraw Hill Companies.

Semester VI (Indian Knowledge System in Statistics)

Course Code: 25BUST6IKS

CO1	Explain the fundamental principles, key vocabulary and methods of Indian Knowledge	L2
	Systems, Pramana Theory.	
CO2	Summarize ancient Indian contributions to Statistics and understand applications in	L3
	traditional knowledge streams	
CO3	Outline links between modern statistical procedures and ancient Indian statistical	L2
	approaches.	
CO4	Summarize the Development of sampling techniques and design of experiments in India.	L2

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	0	1	2	2
CO2	3	2	0	0	2	2
CO3	2	2	0	0	2	2
CO4	2	2	2	0	2	3

Course Code 25BUST6IKS	Title Indian Knowledge System (Statistics)	Credits 2	No. of lectures
	Introduction:Introduction to IKS: What does it mean in statistics?		
Unit I:	 Key Vocabulary: Anumana (Inference), Pramana (Sou Knowledge), Pratyaksha (Perception), Upamana (Com Shabda (Verbal Testimony), Arthapatti (Postulation), Anupalabdhi, (Non-cognition), Chhanda (Metrics), Jyo Vedanga (Calendrical Calculations) and Sankhya (Cla 	15	
	• Introduction to ancient mathematics as an integral part heritage, Indian classical combinatorics (e.g. binomial/arrangement reasoning in Indian Statistics)		
	Origin of Probability ideas in Indian games, dice, gam historical texts	bling in	
	 Traditional Indian inference and "proof/logic" systems Buddhist logic) and relation to hypothesis testing Contributions of Indian Scientists/Statisticians in deve Sankhya Shastra. (P. C. Mahanolobis, P.V. Sukhatme, V. S. Huzurbazar, Raj Chandra Bose, Debabrata Basu 	lopment of C. R. RAo,	
	Development of sampling techniques and design of exp India: Origin and history of development of sampling in India		

	Development of the official statistical system in India, Role of	
	Ministry of Statistics & Program Implementation (MoSPI), Central	
Unit II:	Statistical Office (CSO), National Sample Survey Office (NSSO), 15	
	Indian Statistical Institute and National Statistical Commission.	
	Importance and Historical development of various designs of	
	experiments	
	A profile of design of experiments at IASRI.	

Reference Books and research papers:

- 1. B. Datta and A.N. Singh, History of Hindu Mathematics: A Sourcebook, 2 vols. Bombay: Asia Publishing House, repr. 1962.
- 2. Indian Knowledge Systems Vol 1 & 2, Avadhesh K. Singh, Kapil Kapoor (2021)
- 3. Evolution of Statistics in India. J. K. Ghosh, P. Maiti, T. J. Rao, and B. K. Sinha. Journal International Statistic Review 1999, ISI
- 4. Official Statistics in India: The past and the present. T.J. Rao. Journal of Official Statistics vol. 26, no.2,2010.
- 5. Probability in Ancient India. C. K. Raju, Handbook of Philosophy of Statistics, edited by Paul Thagard Dov M. Gabbay and John Woods, handbook of Philosophy of Science, Elsevier, 2011.
- 6. Aloke Dey and Rahul Mukerjee, Development of Research in Experimental Design in India, International Statistical Review/ Revue International de Statistique, Vol. 80, No. 2 (August 2012), pp. 231-252 (22 pgs) Published by: Indian Statistical Institute (ISI)
- 7. Ghosh, J.K., Mitra, S. K., and Parthasarathy, K. R. (1992) Glimpses of India's Statistical Heritage, Wiley Eastern, New Delhi.
- 8. Glimpses of India's Statistical Heritage Bhāvanā (bhavana.org.in)
- 9. B.L.S. Prakasa Rao. C.R. Rao: A Life in Statistics. Current Science. 10 Sep. 2014. 107(5): 895–90
- 10. Anil Gore, Sharayu Paranjpe and Madhav Kulkarni (2009), 'Statistics for everyone', SIPF academy, Publishers and consultants, Nashik, India.
- 11. Rajender Prasad and VK Gupta, A profile of Design of Experiments at IASRI.
- 12. MoSPI website: https://www.mospi.gov.in/

Course Code: 25BUST6P01

CO1	Solve the problem based on conditional and unconditional probabilities in a	L3
	Markov chain and classify the states.	
CO2	Find limiting probabilities and stationary distribution of Markov chain.	L1
CO3	Solve the problems based Poisson Processes.	L3
CO4	Solve the problems based Birth and Death process.	L3

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	1	0
CO2	3	1	0	0	0	0
CO3	3	1	1	0	0	0
CO4	3	1	1	0	0	0

	Course Title	Credits
Course Code 25BUST6P01	Practical Based on 25BUST6T01	2
6.1.1	Transition Probability Matrix	
6.1.2	Markov Chain: Conditional Probability	
6.1.3	Markov Chain: Unconditional Probability	
6.1.4	Classification of States	
6.1.5	Limiting Probability	
6.1.6	Stationary Distribution	
6.1.7	Poisson Processes	
6.1.8	Pure Birth Processes	
6.1.9	Yule Furry process	
6.1.10	Pure Death Processes	
6.1.11	Birth and Death Processes	
6.1.12	Linear Growth Model	

Course Code: 25BUST6P02

CO1	Find the power of the test by constructing critical regions and most powerful	L1
	tests.	
CO2	Develop SPRT for different distributions in different scenarios.	L6
CO3	Solve examples based on various non parametric tests based on the given real life	L3
	problems.	
CO4	Construct critical regions and solve non parametric tests using various softwares.	L3

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	3	0	2	1
CO2	3	2	2	0	2	1
CO3	3	3	3	0	2	1
CO4	3	3	2	0	2	1

	Course Title	
Course Code		Credits
25BUST6P02	Practical Based on 25BUST6T02	2
6.2.1	Testing of Hypothesis-I	
6.2.2	Testing of Hypothesis-II	
6.2.3	UMP Test-I	
6.2.4	UMP Test-II	
6.2.5	SPRT - I	
6.2.6	SPRT - II	
6.2.7	Non-parametric Test (Single Sample)	
6.2.8	Non-parametric Test - I (Two Sample)	
6.2.9	Non-parametric Test – II (Two Sample)	
6.2.10	Practical using R-software (Testing of Hypothesis)	
6.2.11	Practical using R software (Non Parametric test)	
6.2.12	Practical using MS-Excel (Non Parametric test)	

Course Code: 25BUST6P03

CO1	Identify Inventory problem in the given real life logistics situation	L3
CO2	Apply appropriate Inventory model to solve the Inventory problem	L3
CO3	Evaluate and Interpret Replacement problems in real life	L5
CO4	Demonstrate skills to understand system reliability problems.	L2

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	2	1
CO2	3	2	2	0	2	1
CO3	3	3	2	0	2	1
CO4	3	3	2	0	2	1

	Course Title	
Course Code		Credits
25BUST6P03	Practical Based on 25BUST6T03	2
6.3.1	Inventory I	
6.3.2	Inventory II	
6.3.3	Inventory III	
6.3.4	Inventory IV	
6.3.5	Probabilistic Inventory Model	
6.3.6	Replacement Problem-I	
6.3.7	Replacement Problem-II	
6.3.8	Replacement Problem-III	
6.3.9	Reliability-I	
6.3.10	Reliability-II	
6.3.11	Reliability III	
6.3.12	MTTF of a system	

Semester VI (Statistics-Major DSE)

Course Code: 25BUST6TE1

CO1	Summarize six-sigma applications of six-sigma tools	L2
CO2	Solve linear programming problem using dual simplex method.	L3
CO3	Explain methods of investment analysis	L2
CO4	Apply statistical tools in measuring risk in returns	L3

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	2	1
CO2	3	2	2	0	2	1
CO3	3	3	2	0	3	1
CO4	3	3	3	0	3	1

Course Code 25BUST6TE1	Course Title Industrial Statistics	Credits 2	No. of hours
Unit I	Unit I: INTRODUCTION TO SIX SIGMA Concept, Basic Principles, Goals, six sigma v/s TQM 9000, Traditional Management, Quality defined, VOC CTQ, Quality measurement to six sigma, Seven too quality and its application. Cause and Effect diagram bone Diagram), Control charts (only concept of co chart), DMAIC with case study, introduction to Lea Sigma. Failure Modes and Effect Analysis, Measure System Analysis, Control charts and process capabilit , Cpk values), Lean Principles(waste reduction, 5S, Ka LPP, Dual and Dual Simplex method to solve LPI applications.	15	
Unit II	Unit II: INVESTMENT ANALYSIS Investment Decision Analysis Phase of Investment, Factors, Influencing Investment Decision, Time money Technique of investment analysis Deterministic Probabilistic Methods Basics of risk and return: concept of returns, syste unsystematic risk, application of standard deviation, of variation, beta, practical problems on standard variance and beta	15	

Books and References:

- Sharma S. D.: Operations Research, Eighth edition, Kedarnath Ramnath & Co.
- Sharpe, W.F., Alexander, G.J. & Bailey, J. Investments, (6th edition), Prentice Hall of India. Chapter 15
- Six Sigma Deployment, (2003), Cary W. Adams, Charles E Wilson Jrs, Praveen Gupta, Elsevier Science.
- Six Sigma For Beginners: Pocket Book (2018), Rajiv Tiwari Kindle Edition 10. Introduction to Statistical Quality Control(2009), Montgomery, Douglas, C, Sixth Edition, John Wiley & Sons. Inc.:.
- Quanty Control(2009), Montgomery, Douglas, C., Sixth Edition, John Wiley & Sons. Inc.:.
 Six Sigma For Business Excellence, (2005), Penelope Przekop, McGraw-Hill Six Sigma Handbook, by Pyzdek, McGraw Hill Education; 4 edition (1 July 2017).

- Vora N. D.: Quantitative Techniques in Management, Third edition, McGraw Hill Companies.
- What Is Design For Six Sigma, (2005), Roland Cavanagh, Robert Neuman, Peter Pande, Tata McGraw-Hill

Course Code: 25BUST6PE1

CO1	Apply DMAIC framework to identify, analyze and solve process-related	L3
	problems	
CO2	Apply statistical tools to measure process control tools to analyze data effectively	L3
CO3	Apply Dual simplex method to solve linear programming problems	L3
CO4	Evaluate investment options using techniques like NPV, IRR, etc.	L5

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	2	1
CO2	3	3	2	0	2	1
CO3	3	3	2	0	2	1
CO4	3	3	2	0	2	1

Course Code	Course Title	
25BUST6PE1		Credits
	Practical Based on 25BUST6TE1	2
Practical No.	Name of Practical	
6.4.1	Six Sigma-I	
6.4.2	Six Sigma-II	
6.4.3	Control Chart -I	
6.4.4	Control Chart -II	
6.4.5	Dual Simplex-I	
6.4.6	Dual Simplex-II	
6.4.7	Investment Analysis-I	
6.4.8	Investment Analysis-II	
6.4.9	Portfolio Management -I	
6.4.10	Portfolio Management -II	
6.4.11	Practical Using Excel -I	
6.4.12	Practical Using Excel -II	

Course Code: 25BUST6TE2

CO1	Define index numbers and explain their significance in economic and statistical	L1
	analysis.	
CO2	Construct various types of index numbers (e.g., Laspeyres, Paasche, Fisher) and	L6
	interpret their meaning.	
CO3	Explain the importance of demographic methods in population studies.	L5
CO4	Construct and interpret a life table and calculate crude birth and death rates, age-	L6
	specific rates, fertility, and mortality indicators.	

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	2	0	3	1
CO2	3	3	2	0	3	1
CO3	3	3	2	0	2	1
CO4	3	3	2	0	2	1

Course Code 25BUST6TE2	Course Title <u>Applied Statistics -II</u>	Credits 2	No. of hours	
Unit I	Unit I: Index Numbers Index numbers as a comparative tool. Stages in construction of Price Index Numbers. Measures of Simple and Composite Index Num Laspeyre's, Paasche's, Marshal-Edgeworth's, Dobis Bowley's and Fisher's Index Numbers formula. Quantity Index Numbers and Value Index Numbers, reversal test, Factor reversal test, Circular test. Fixed base Index Numbers, Chain base Index Num Base shifting, splicing and deflating. Cost of Living Index Number. Concept of Real In based on Wholesale Price Index Number	nbers. ch & Time nbers.	15	
Unit II	Unit II: Introduction to Vital statistics and Demographic methods Introduction and sources of collecting data on vital statistics, errors in census and registration data. Measurement of population, rate and ratio of vital events. Measurements of Mortality: Crude Death Rate (CDR), Specific Death Rate (SDR), Infant Mortality, Rate (IMR) and Standardized Death Rates Life (mortality) tables: definition of its main functions and uses. Measurement of fertility and reproduction: CBR, GFR, and TFR. Measurement of population growth: GRR, NRR.			

Books and References:

- Agarwal B. L.(2013): Basic Statistics, New Age International Ltd.
- Croxton, Fredrick E., Cowden, Dudley J. and Klein, S. (1973): Applied General Statistics, 3rd Edition. Prentice Hall of India Pvt. Ltd.
- Gun A.M., Gupta M.K. and Dasgupta, B. (2008): Fundamental of Statistics, Vol. II, 9th Edition

- World Press, Kolkata
- Gupta, S. C. and Kapoor, V. K. (2014), Fundamentals of Applied Statistics, Fourth Edition, Sultan Chand and Sons Publishers, New Delhi.
- Gupta, S. C. and Kapoor, V. K. (2014), Fundamentals of Mathematical Statistics, Eleventh Edition, Sultan Chand and Sons Publishers, New Delhi.
- Keyfitz N., Beckman John A.(2010): Demography through Problems, Springer
- Mukhopadhyay, P. (1999): Applied Statistics, New Central Book Agency, Calcutta.

Course Code: 25BUST6PE2

CO1	Apply Laspeyres, Paasche, and Fisher's formulas to construct price and quantity	L3
	index numbers using datasets.	
CO2	Interpret the implications of index number changes in economic contexts.	L5
CO3	Solve crude birth and death rates, infant mortality rate, fertility rates, and age- specific death rates using census or survey data.	L3
CO4	Interpret life expectancy and mortality patterns from life table data.	L5

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	0	2	1
CO2	3	3	2	0	2	1
CO3	3	3	2	0	3	1
CO4	3	3	3	0	3	1

	Course Title	
Course Code		Credits
25BUST6PE2	Practical Based on 25BUST6PE2	2
Practical No.	Name of Practical	
6.4.1	Simple Index Numbers	
6.4.2	Composite Index Numbers	
6.4.3	Quantity Index Numbers	
6.4.4	Value Index Numbers	
6.4.5	Fixed base Index Numbers	
6.4.6	Splicing and deflating	
6.4.7	CDR, IMR and Age Specific death rate	
6.4.8	Standardized death rate by:- (i) Direct method (ii) Indirect method	
6.4.9	Life Tables	
6.4.10	Problems based on CBR, GFR,	
6.4.11	Problems based on SFR, TFR	
6.4.12	Problems based on GRR and NRR	

Semester VI (Statistics-SEC)

Course Code: 25BUST6SEC

CO1	Explain unsupervised learning methods such as clustering and dimensionality	L2
	reduction, and evaluate their applications in pattern discovery and anomaly	
	detection.	
CO2	Interpret and compare ensemble learning strategies including bagging, boosting,	L5
	stacking, and reinforcement learning approaches like Q-learning and MDP.	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	1	0
CO2	3	3	2	0	1	1

Course Code 25BUST6SEC	Course Title Credits Data Science and Statistical Learning-II 1					
Unit I	Unsupervised Learning Clustering: What is Cluster Analysis, Major Clustering Metho Methods, Hierarchical Methods, Density-Based Methods, Clustering Methods, Outlier Analysis, Dimensionality Red PCA), Isolation Forest Model. Ensemble Learning Bagging (Random Forest), Boosting (AdaBoost, Gradi XGBoost). Stacking and Blending Reinforcement Learning (Intro) Markov Decision Process (MDP), Q-Learning, Ap Reinforcement Learning Applications & Case Studies Real-world applications in Finance, and retails. Tools: Python and ML Libraries (Scikit-learn, TensorFlow). Stacking and Blending Introduction to SQL: Database, Create Database, Data Types, DDL, DML, DCL St Function, Joins & Relationship Between Tables, Grouping & Subqueries.	Model-Based uction (t-SNE, ent Boosting, plications of attements, SQL	15			

Reference Books:

- Bhatnagar, S. (2020). Machine learning for decision makers. BPB Publications.
- Chakraborty, B., & Roy, A. (2020). Artificial intelligence and machine learning. PHI Learning.
- Jain, P. (2018). Machine learning: Step-by-step guide for beginners. BPB Publications.
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (1st ed.)
- Prasad, B. (2021). Fundamentals of machine learning. Wiley India.
- Raj, M. (2019). Introduction to machine learning. Oxford University Press India.
- Ramesh, K., & Vishnu, P. (2019). Machine learning techniques and applications. McGraw Hill Education India.
- William, P., Sakhare, N. N., & Pardeshi, D. B. (2023). Machine Learning. NiraliPrakashan.

Course Code: 25BUST6SEC

C	CO3	Analyze unsupervised and ensemble learning algorithms using Python libraries on real-world datasets and analyze their predictive performance using appropriate	L4
		evaluation metrics.	
C	CO4	Apply SQL commands to create, manipulate, and query relational databases, and	L3
		apply grouping, aggregation, and subqueries to extract meaningful insights.	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO3	3	3	3	0	2	1
CO4	3	2	3	0	2	1

	Course Title				
Course Code		Credits			
25BUST6SEC	Practical Based on Data Science and Statistical	1			
	Learning-II				
Practical No.	Name of Practical				
6.5.1	Implement Clustering Techniques: K-Means and DBSCAN on suitable datasets				
6.5.2	Dimensionality Reduction using PCA and t-SNE				
6.5.3	Outlier Detection using Isolation Forest and Z-score Techniques				
6.5.4	Ensemble Learning: Random Forest, AdaBoost, and XGBoost Compar	rison			
6.5.5	SQL for Data Science: DDL and DML operations				
6.5.6	SQL for Data Science: Join operation and Subquery operation				

Semester VI (Statistics-OJT)

Course Code: 25BUST6OJT(Statistics)
Course Title: On Job Training in Statistics II

CO1	Identify and Describe real-world statistical applications.	L3	
CO2	Apply and analyze data collection processing and analytical methods to solve		
	work-place based statistical problems.		
CO3	Demonstrate and Evaluate Build professional behavior, communications skills,	L2	
	teamwork and ethical conduct and time management		
CO4	Adapt the data interpretation skills, create reports, presentations reflecting	L4	
	industry exposure and career preparedness.		

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	3	2	1	3	2
CO2	3	3	3	1	3	3
CO3	3	4	3	2	3	3
CO4	3	4	3	2	4	3

VPM's B.N. Bandodkar College of Science (Autonomous), Thane Curriculum Structure for the Undergraduate Degree Programme T.Y.B.Sc Statistics

	SEMESTER – V	V Employability (EM), Pr Entrepreneurship (EN), Eq				Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)			
Course Code	Major Course Title	EM	EN	SD	PE	GE	HV	ES	
25BUST5T01	Distribution Theory			√					
25BUST5T02	Theory of Estimation								
25BUST5T03	Introduction to Regression Analysis	V		V			-		
25BUST5P01	Practical Based on 25BUST6T01	$\sqrt{}$			-		-		
25BUST5P02	Practical Based on 25BUST6T02	V		√					
25BUST5P03	Practical Based on 25BUST6T03	V		√					
	DSE Course Title								
25BUST5TE1	Biostatistics		-	1					
25BUST5PE1	Practical Based on 25BUST5TE1	V		√					
25BUST5TE2	Applied Statistics -I								
25BUST5PE2	Practical Based 25BUST5TE2	V		V		-	-		
	Minor Course Title								
25BUST5TMN	Business Statistics	V		1		-			
	Skill Enhancement Course (SEC)								
25BUST5SEC	Data Science and Statistical Learning-I	V	$\sqrt{}$	V					
	On Job Training								
25BUST5OJT	On Job Training in Statistics I	V	V	V	V	V	V	V	
13	Total	09	02	13	01	01	01	01	

	SEMESTER – VI	Course imparts Employability (EM), Entrepreneurship (EN), Skill Development (SD)			Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)			ie (HV),
Course Code	Major Course Title	EM	EN	SD	PE	GE	HV	ES
25BUST6T01	Stochastic Processes			√	-			
25BUST6T02	Testing of Hypothesis			√				
25BUST6T03	Optimization Techniques and Reliability	V		V		-	-	
25BUST6IKS	Indian Knowledge System in Statistics						-	
25BUST6P01	Practical Based on 25BUST6T01	V		V				
25BUST6P02	Practical Based on 25BUST6T02	V		V			-	
25BUST6P03	Practical Based on 25BUST6T03	V		V				
	DSE Course Title							
25BUST6TE1	Industrial Statistics	$\sqrt{}$		V				
25BUST6PE1	Practical's Based on 25BUST6PE1	1		V				
25BUST6TE2	Applied Statistics-II	-		V				
25BUST6PE2	Practical's Based on 25BUST6TE2	V		V				
	Skill Enhancement Course (SEC)							
25BUST6SEC	Data Science and Statistical Learning-II	V	V	V				
	On Job Training							
25BUST6OJT	On Job Training in Statistics II	V	V	$\sqrt{}$	V	V	V	V
13	Total	09	02	12	01	01	01	01