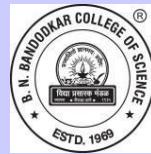


Academic Council Meeting No. and Date: 09/ July 02, 2024


Agenda Number : 3

Resolution Number : 41, 42 / 3.3, 3.23

Vidya Prasarak Mandal's



**B. N. Bandodkar College of  
Science (Autonomous), Thane**



Syllabus for

**Programme: Bachelor of Science  
Specific Programme: Mathematics**

**[S.Y.B.Sc. MATHEMATICS]**

**Level 5.0**

Choice Based Grading System

**Revised under NEP**

**From Academic Year 2024-25**

**This page is intentionally left blank**

## Preamble

VPM'S B. N. Bandodkar College of Science Autonomous has changed the syllabus of S.Y.B.Sc. Mathematics from the academic year 2024-25 under NEP.

Mathematics is the most fundamental subject and an essential tool in the field of Science and Technology. The syllabus has been developed to prepare the students in pursuing research in Mathematics as well as to enhance their analytical skills and knowledge of mathematical tools and techniques required in industry for employment.

In recent decades, the extent of application of Mathematics to real world problems has increased by leaps and bounds. Taking into consideration the rapid changes in science and technology and new approaches in different areas of mathematics and related subjects like Physics, Statistics and Computer Sciences, the board of studies in Mathematics has prepared the syllabus of S.Y.B.Sc. Mathematics. The present syllabi of S. Y. B. Sc. for Semester III and Semester IV has been designed as per U.G.C. Model curriculum so that the students learn Mathematics needed for these branches, learn basic concepts of Mathematics and are exposed to rigorous methods gently and slowly. The syllabi would consist of two semesters and each semester would comprise of three courses for S.Y.B.Sc Mathematics. Course I is ‘Calculus III and Multivariable Calculus I’. Calculus is applied and needed in every conceivable branch of science. Course II, ‘Linear Algebra I and Linear Algebra II’ develops mathematical reasoning and logical thinking and has applications in science and technology. Course III is “Ordinary differential equations” which is the applied computational technical skill.

## **PROGRAMME OUTCOMES (POs) OF BACHELOR OF SCIENCE (B.Sc.)**

*The Undergraduate Programmes of Science are intended to cater quality education and attain holistic development of learners through the following programme outcomes:*

### **PO1 - Disciplinary Knowledge**

Lay a strong foundation of conceptual learning in science. Instil ability to apply science in professional, social and personal life.

### **PO2 - Inculcation of Research Aptitude**

Ignite spirit of inquiry, critical thinking, analytical skills and problem-solving approach which will help learners to grasp concepts related to research methodology and execute budding research ideas.

### **PO3 - Digital Literacy**

Enhance ability to access, select and use a variety of relevant information e-resources for curricular, co-curricular and extracurricular learning processes.

### **PO4 - Sensitization towards Environment**

Build a cohesive bond with nature by respecting natural resources, encouraging eco-friendly practices and creating awareness about sustainable development.

### **PO5 - Individuality and Teamwork**

Encourage learners to work independently or in collaboration for achieving effective results through practical experiments, project work and research activities.

### **PO6 - Social and Ethical Awareness**

Foster ethical principles which will help in developing rational thinking and becoming socially aware citizens. Build an attitude of unbiased, truthful actions and avoid unethical behaviour in all aspects of life.

|                                         |                             |
|-----------------------------------------|-----------------------------|
| <b>Eligibility:</b>                     | F.Y.B.Sc.                   |
| <b>Duration:</b>                        | 1 Year (SEM III and SEM IV) |
| <b>Mode of Conduct:</b>                 | Offline                     |
| <b>Total Credits for the Programme:</b> | 176                         |
| <b>Starting year of implementation:</b> | 2024 - 25                   |
| <b>Discipline/Subject:</b>              | Mathematics                 |

### **Programme Specific Outcomes**

- To understand the basic concepts and fundamental theories of Mathematics
- To develop problem solving and computing skills
- To use mathematical concepts learnt for deducing proofs with logical reasoning
- To develop analytical skills and understanding of abstract theories of Mathematics
- To learn various mathematical tools and techniques and apply them in real world

**Specific Programme:** S.Y.B.Sc. (Mathematics - Major)

### **Assessment:**

Weightage for assessments (in percentage) For Major and Minor

| Type of Course | Formative Assessment / IA | Summative Assessment |
|----------------|---------------------------|----------------------|
| Theory         | 40%                       | 60%                  |

## S. Y. B. Sc. Mathematics Structure of Programme

| Semester III      |                                              |                             |           |
|-------------------|----------------------------------------------|-----------------------------|-----------|
| Major             |                                              |                             |           |
| Course Code       | Course Title                                 | No. of lectures<br>in hours | Credits   |
| <b>24BUMT3T01</b> | Calculus III                                 | <b>30</b>                   | <b>2</b>  |
| <b>24BUMT3T02</b> | Linear Algebra I                             | <b>30</b>                   | <b>2</b>  |
| <b>24BUMT3T03</b> | Ordinary Differential Equations I            | <b>30</b>                   | <b>2</b>  |
| <b>24BUMT3P01</b> | Practical based on 24BUMT3T01 and 24BUMT3T03 | <b>60</b>                   | <b>2</b>  |
| <b>24BUMT3P02</b> | Practical based on 24BUMT3T02 and 24BUMT3T03 | <b>60</b>                   | <b>2</b>  |
| <b>24BUMT3P03</b> | Field Project in Mathematics I               | <b>60</b>                   | <b>2</b>  |
| <b>24BU3SEC03</b> | Combinatorics II                             | <b>45</b>                   | <b>2</b>  |
| <i>Total</i>      |                                              | <b>315</b>                  | <b>14</b> |
| Minor             |                                              |                             |           |
| Course Code       | Course Title                                 | No. of lectures<br>in hours | Credits   |
| <b>24BUMT3T04</b> | Applications of Linear Algebra               | <b>30</b>                   | <b>2</b>  |
| <i>Total</i>      |                                              | <b>30</b>                   | <b>2</b>  |
| Generic Elective  |                                              |                             |           |
| Course Code       | Course Title                                 | No. of lectures<br>in hours | Credits   |
| <b>24BUMT3T05</b> | Graphs of functions                          | <b>30</b>                   | <b>2</b>  |
| <i>Total</i>      |                                              | <b>30</b>                   | <b>2</b>  |

| Semester IV             |                                              |                             |            |
|-------------------------|----------------------------------------------|-----------------------------|------------|
| Major                   |                                              |                             |            |
| Course Code             | Course Title                                 | No. of lectures<br>in hours | Credits    |
| <b>24BUMT4T01</b>       | Multivariable Calculus I                     | <b>30</b>                   | <b>2</b>   |
| <b>24BUMT4T02</b>       | Linear Algebra II                            | <b>30</b>                   | <b>2</b>   |
| <b>24BUMT4T03</b>       | Ordinary Differential Equations II           | <b>30</b>                   | <b>2</b>   |
| <b>24BUMT4P01</b>       | Practical based on 24BUMT4T01 and 24BUMT4T03 | <b>60</b>                   | <b>2</b>   |
| <b>24BUMT4P02</b>       | Practical based on 24BUMT4T02 and 24BUMT4T03 | <b>60</b>                   | <b>2</b>   |
| <b>24BUMT4P03</b>       | Field Project in Mathematics II              | <b>60</b>                   | <b>2</b>   |
| <b>24BU4SEC03</b>       | Linear Algebra III                           | <b>45</b>                   | <b>2</b>   |
|                         |                                              | <b>Total</b>                | <b>315</b> |
| <b>Minor</b>            |                                              |                             |            |
| Course Code             | Course Title                                 | No. of lectures<br>in hours | Credits    |
| <b>24BUMT4T04</b>       | Applications of Calculus                     | <b>30</b>                   | <b>2</b>   |
|                         |                                              | <b>Total</b>                | <b>30</b>  |
| <b>Generic Elective</b> |                                              |                             |            |
| Course Code             | Course Title                                 | No. of lectures<br>in hours | Credits    |
| <b>24BUMT4T05</b>       | Numerical Methods                            | <b>30</b>                   | <b>2</b>   |
|                         |                                              | <b>Total</b>                | <b>30</b>  |

# Semester III

## Major Courses

### 24BUMT3T01

|     |                                                       |    |
|-----|-------------------------------------------------------|----|
| CO1 | Interpret theoretical concept of Riemann Integration. | L2 |
| CO2 | Utilize the concept to solve the problems.            | L3 |
| CO3 | Interpret the concepts of Improper Integral.          | L2 |
| CO4 | Apply the concepts to Beta, Gamma functions           | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 2   | 1   | 0   | 1   | 0   |

| Course Code<br><b>24BUMT3T01</b> | Course Title<br><b>Calculus III</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Credits<br><b>2</b> | No. of lectures<br><b>30</b> |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|
| <b>Unit I :</b>                  | <b>Riemann Integration</b><br>1. Idea of approximating the area under a curve by inscribed circumscribed rectangles. Partitions of an interval. Refinement of a partition. Upper and lower sums for a bounded real valued function on a closed and bounded interval. Riemann integral.<br>2. Criterion for Riemann Integrability. Characterization of the Riemann integral as the limit of a sum. Examples.<br>3. Algebra of Riemann Integrable functions.<br>4. Riemann Integrability of continuous function and more generally of a bounded function whose set of discontinuities has only finitely many points. Riemann Integrability of monotone functions. |                     | <b>15</b>                    |
| <b>Unit II:</b>                  | <b>Application of Integrations and Improper Integrals</b><br>1. Area between the two curves. Lengths of plane curves. Surface area of surfaces of revolution.<br>2. First and Second Fundamental Theorems of Calculus.                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     | <b>15</b>                    |

|  |                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | <p>3. Mean Value Theorem. Integration by parts formula. Leibnitz's rule.</p> <p>4. Definitions of two types of improper integrals. Necessary and sufficient condition for convergence.</p> <p>5. Absolute convergence. Comparison and Limit form of Comparison test for convergence.</p> <p>6. Gamma and Beta functions and their properties. Relationship between Gamma and Beta function.</p> |  |
|--|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

**Books and References:**

| Sr. No. | Title                                  | Author/s                            | Publisher                   | Edition | Year |
|---------|----------------------------------------|-------------------------------------|-----------------------------|---------|------|
| 1.      | Methods of Real Analysis               | R. R. Goldberg                      | Oxford and IBH              |         | 1964 |
| 2.      | Calculus and Analytic Geometry         | Thomas and Finney                   | Addison-Wesley              |         | 1998 |
| 3.      | Introduction to Real Analysis          | R. G. Bartle and D. R. Sherbert     | John Wiley & Sons           |         | 1994 |
| 4.      | A course in Calculus and Real Analysis | Sudhir Ghorpade and Balmohan Limaye | Springer International Ltd. |         | 2000 |
| 5.      | Calculus Vol.2                         | T. Apostol                          | John Wiley                  |         |      |

**24BUMT3T02**

|     |                                                      |    |
|-----|------------------------------------------------------|----|
| CO1 | Summarize the concepts of System of Linear equations | L2 |
| CO2 | Solve the problems using Matrices                    | L3 |
| CO3 | Interpret the concepts of Vector space               | L2 |
| CO4 | Justify the applications of vector space             | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 2   | 1   | 0   | 1   | 0   |

| Course Code<br>24BUMT3T02    | Course Title<br>Linear Algebra I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Credits<br>2               | No. of<br>lectures<br>30      |         |      |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|---------|------|
| Unit I :                     | <b>System of Linear Equations and Matrices</b> <ol style="list-style-type: none"> <li>1. Definition of a linear transformation of vector spaces; elementary properties, theorems, Examples. Sums and scalar multiples of linear transformations. Composites of linear transformations-examples. Gauss Elimination Method.</li> <li>2. Null-space (kernel) and the image (range) of a linear transformation, consequences, examples. Nullity and Rank of a linear transformation. Rank-Nullity Theorem.</li> <li>3. Matrix associated with linear transformation. Matrix of the composite of two linear transformations. Invertible linear transformations (isomorphism), Linear Operator.</li> </ol>                                                                                   | 15                         |                               |         |      |
| Unit II :                    | <b>Vector Space over R</b> <ol style="list-style-type: none"> <li>1. Definition of a vector space over R. Subspaces; Examples of vector spaces, including the Euclidean space <math>R^n</math>, lines, planes and hyperplanes in <math>R^n</math> passing through the origin, space of systems of homogeneous linear equations, space of polynomials, space of various types of matrices. Intersections and sums of subspaces. Direct sum of vector spaces. Quotient space of a vector space by its subspace.</li> <li>2. Linear combination of vectors. Linear span .Definition of finitely generated vector space. Linear dependence and independence of subsets of a vector space.</li> <li>3. Basis of a vector space. Dimension of a vector space, theorems. Examples.</li> </ol> | 15                         |                               |         |      |
| <b>Books and References:</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |                               |         |      |
| Sr. No.                      | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Author/s                   | Publisher                     | Edition | Year |
| 1.                           | Elementary Linear Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Howard Anton, Chris Rorres | Howard Wiley Student Edition  | Twelfth | 2018 |
| 2.                           | Introduction to Linear Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Serge Lang                 | Springer International Ltd.   | Second  | 2012 |
| 3.                           | Linear Algebra - A Geometric Approach                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S Kumaresan                | PHI Learning.                 | First   | 2000 |
| 4.                           | Linear Algebra Done Right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sheldon Axler              | Springer International Ltd.   | Fourth  | 2023 |
| 5.                           | Linear Algebra with Applications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gareth Williams            | Jones and Bartlett Publishers | Ninth   | 2017 |

## 24BUMT3T03

|     |                                                                                             |    |
|-----|---------------------------------------------------------------------------------------------|----|
| CO1 | Solve first order exact and non-exact ODEs and linear ODEs                                  | L3 |
| CO2 | Explain the mathematical formulation of real-world problems using first order linear ODEs   | L2 |
| CO3 | Prove results of second order homogeneous and non-homogeneous linear differential equations | L5 |
| CO4 | Solve second order homogeneous and non-homogeneous linear differential equations            | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 1   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 1   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 1   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 1   | 1   | 0   | 1   | 0   |

| Course Code<br>24BUMT3T03 | Course Title<br>Ordinary Differential Equations I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Credits<br>2 | No. of<br>lectures<br>30 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| <b>Unit I :</b>           | <p><b>First Order First Degree Differential Equations</b></p> <ol style="list-style-type: none"> <li>Basics of ordinary differential equations</li> <li>Exact equations of first order and first degree, non-exact equations and rules of finding integrating factors</li> <li>Linear and reducible linear differential equations of first order, Bernoulli's differential equation</li> <li>Applications of first order differential equations</li> </ol>                                                                                                                                                                                                                                                                                          |              | <b>15</b>                |
| <b>Unit II :</b>          | <p><b>Second Order Linear Differential Equations</b></p> <ol style="list-style-type: none"> <li>Homogeneous and Non-homogeneous second order linear differential equations, Wronskian and linear independence of the solutions, General solution of homogeneous and non-homogeneous second order differential equation (with proofs)</li> <li>Second order homogeneous linear differential equations with constant coefficients, the auxiliary equations, Roots of the auxiliary equations: real and distinct, real and repeated, complex conjugates.</li> <li>Second order non-homogeneous linear differential equations with constant coefficients: The method of undetermined coefficients and The method of variation of parameters.</li> </ol> |              |                          |

| <b>Books and References:</b> |                                                               |                                                              |                             |                |             |
|------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------|-------------|
| <b>Sr. No.</b>               | <b>Title</b>                                                  | <b>Author/s</b>                                              | <b>Publisher</b>            | <b>Edition</b> | <b>Year</b> |
| 1.                           | Ordinary Differential Equations A First Course                | D Somasundaram                                               | Narosa                      |                | 2005        |
| 2.                           | Differential equations with applications and historical notes | George F. Simmons                                            | McGraw Hill Education       | Second         | 2017        |
| 3.                           | Elementary Differential Equations                             | Earl D. Rainville, Phillip E. Bedient and Richard E. Bedient | Publisher Pearson Education | Eight          | 2016        |
| 4.                           | Ordinary And Partial Differential Equations                   | M. D. Raisinghania                                           | S. Chand                    |                | 2005        |
| 5.                           | An Introduction to Ordinary Differential Equations            | E. A. Coddington                                             | Dover Books                 |                | 1989        |
| 6.                           | Ordinary Differential Equations: Principles and Applications  | A. K. Nandakumaran, P. S. Datti and Raju K. George           | Cambridge University Press  | First          | 2017        |

## **24BUMT3P01**

|     |                                                            |    |
|-----|------------------------------------------------------------|----|
| CO1 | Solve problems on Riemann Integration                      | L2 |
| CO2 | Solve problems on applications of Riemann Integration,     | L2 |
| CO3 | Solve problems on Improper Integral.                       | L3 |
| CO4 | Solve first order exact and non-exact ODEs and linear ODEs |    |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO4 | 2   | 0   | 0   | 0   | 3   | 0   |

| Course Code<br><b>24BUMT3P01</b> | Course Title<br><b>Practical based on 24BUMT3T01 and 24BUMT3T03</b> | Credits<br><b>2</b> | No. of lectures<br><b>60</b> |
|----------------------------------|---------------------------------------------------------------------|---------------------|------------------------------|
| Practical 1                      | Calculation of Upper Sum, Lower Sum                                 | 4                   |                              |
| Practical 2                      | Calculation integration using Riemann Sum                           | 4                   |                              |
| Practical 3                      | Properties of Riemann Integral                                      | 4                   |                              |
| Practical 4                      | Problems on fundamental theorem of Calculus                         | 4                   |                              |
| Practical 5                      | Mean Value Theorems, Integration by parts, Leibnitz rule            | 4                   |                              |
| Practical 6                      | Convergence of Improper Integrals.                                  | 4                   |                              |
| Practical 7                      | Test for the convergence of improper integral                       | 4                   |                              |
| Practical 8                      | Beta Gamma functions                                                | 4                   |                              |
| Practical 9                      | Area between the curve, Length of the curve                         | 4                   |                              |
| Practical 10                     | Miscellaneous Theoretical Questions based on paper I                | 4                   |                              |
| Practical 11                     | Variable separable form and Linear substitution                     | 4                   |                              |
| Practical 12                     | Homogeneous and non-homogeneous first order linear ODE              | 4                   |                              |
| Practical 13                     | Exact Differential Equations                                        | 4                   |                              |
| Practical 14                     | Non-exact differential equations                                    | 4                   |                              |
| Practical 15                     | Linear and reducible to linear equations                            | 4                   |                              |
|                                  | <b>Total</b>                                                        |                     | <b>60</b>                    |

## **24BUMT3P02**

|     |                                                                                                                         |    |
|-----|-------------------------------------------------------------------------------------------------------------------------|----|
| CO1 | Solve System of Linear equations and the problems using Matrices                                                        | L3 |
| CO2 | Solve the problems on concepts of Vector space and applications of vector space and linear dependence and independence. | L3 |
| CO3 | Solve the problems on Subspaces, Basis and Dimensions.                                                                  | L3 |
| CO4 | Solve second order homogeneous and non-homogeneous linear differential equations with constant coefficients             | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO4 | 2   | 0   | 0   | 0   | 3   | 0   |

| Course Code<br><b>24BUMT3P02</b> | Course Title<br><b>Practical based on 24BUMT3T02 and<br/>24BUMT3T03</b>             | Credits<br><b>2</b> | No. of<br>lectures<br><b>60</b> |
|----------------------------------|-------------------------------------------------------------------------------------|---------------------|---------------------------------|
| Practical 1                      | Systems of homogeneous linear equations.                                            | 4                   |                                 |
| Practical 2                      | Systems of non-homogeneous linear equations                                         | 4                   |                                 |
| Practical 3                      | Elementary row operations                                                           | 4                   |                                 |
| Practical 4                      | Elementary column operations                                                        | 4                   |                                 |
| Practical 5                      | Elementary matrices.                                                                | 4                   |                                 |
| Practical 6                      | Vector spaces                                                                       | 4                   |                                 |
| Practical 7                      | Subspaces.                                                                          | 4                   |                                 |
| Practical 8                      | Linear Dependence, Linear Independence                                              | 4                   |                                 |
| Practical 9                      | Problems based on Basis and Dimension                                               | 4                   |                                 |
| Practical 10                     | Miscellaneous Theoretical Questions based on paper II                               | 4                   |                                 |
| Practical 11                     | Applications of first order linear differential equations                           | 4                   |                                 |
| Practical 12                     | General solution of second order homogeneous equations and Wronskian                | 4                   |                                 |
| Practical 13                     | Solving second order homogeneous equations with constant coefficients               | 4                   |                                 |
| Practical 14                     | Solving second order non-homogeneous ODEs using method of undetermined coefficients | 4                   |                                 |
| Practical 15                     | Second order non-homogeneous ODEs using method of variation of parameters           | 4                   |                                 |
|                                  | <b>Total</b>                                                                        |                     | <b>60</b>                       |

## Field Project in Mathematics I

### 24BUMT3P03

|     |                                                                                                                                                     |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO1 | Formulate an appropriate research problem for field project                                                                                         | L6 |
| CO2 | Apply theoretical mathematical concepts to real-world situations or other disciplines, such as physics, engineering, economics, or computer science | L3 |
| CO3 | Conclude the results of the project                                                                                                                 | L5 |
| CO4 | Demonstrate the results through a report and presentation.                                                                                          | L2 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 2   | 0   | 1   | 1   |
| CO2 | 2   | 2   | 2   | 0   | 1   | 1   |
| CO3 | 2   | 2   | 2   | 0   | 1   | 1   |
| CO4 | 2   | 2   | 2   | 0   | 1   | 1   |

## Skill Enhancement Course

### 24BU3SEC03

|     |                                                                                                               |    |
|-----|---------------------------------------------------------------------------------------------------------------|----|
| CO1 | Explain basic concepts of permutations, symmetric group, disjoint cycles, and transpositions.                 | L2 |
| CO2 | Solve problems based on basic concepts of permutations, symmetric group, disjoint cycles, and transpositions. | L3 |
| CO3 | Construct recurrence relations in counting problems such as Tower of Hanoi and Fibonacci sequence.            | L3 |
| CO4 | Solve homogeneous and non-homogeneous recurrence relations using iterative and algebraic techniques.          | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 0   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 0   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 0   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 0   | 1   | 0   | 1   | 0   |

| Course Code<br>24BU3SEC03 | Course Title<br>Combinatorics II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Credits<br>2 | No. of<br>lectures<br>45 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| <b>Unit I:</b>            | <b>Permutations and Recurrence relation</b><br>Permutation of objects, $S_n$ , composition of permutations, results such as every permutation is a product of disjoint cycles, every cycle is a product of transpositions, signature of a permutation, even and odd permutations, cardinality of $S_n$ , $A_n$ .<br><b>Recurrence Relations</b> , definition of homogeneous, non-homogeneous, linear, non-linear recurrence relation, obtaining recurrence relations of Tower of Hanoi, Fibonacci sequence, etc. in counting problems, solving homogeneous as well as non-homogeneous recurrence relations by using iterative methods, solving a homogeneous recurrence relation of second degree using algebraic method proving the necessary result. |              | <b>15</b>                |
| <b>Practical 1</b>        | Permutations and $S_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>3</b>     |                          |
| <b>Practical 2</b>        | Permutations and Cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b>     |                          |
| <b>Practical 3</b>        | Inverse of Permutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>3</b>     |                          |
| <b>Practical 4</b>        | Product of disjoint cycles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>3</b>     |                          |
| <b>Practical 5</b>        | Signature of permutation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3</b>     |                          |
| <b>Practical 6</b>        | Linear Recurrence Relations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>3</b>     |                          |
| <b>Practical 7</b>        | Linear Homogeneous Recurrence Relations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b>     |                          |
| <b>Practical 8</b>        | Solving Recurrence Relations using Iteration Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>3</b>     |                          |
| <b>Practical 9</b>        | Solving Recurrence Relations using Algebraic Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>3</b>     |                          |
| <b>Practical 10</b>       | Solving Linear Non-homogeneous Recurrence Relations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>3</b>     |                          |
|                           | <b>Total</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | <b>45</b>                |

**Books and References:**

| Sr. No. | Title                      | Author/s         | Publisher               | Edition | Year |
|---------|----------------------------|------------------|-------------------------|---------|------|
| 1.      | Discrete Mathematics       | Norman Biggs     | Oxford University Press |         |      |
| 2.      | Introductory Combinatorics | Richard Brualdi  | John Wiley and sons     |         |      |
| 3.      | Combinatorics-Theory       | V. Krishnamurthy | Affiliated East         |         |      |

|    |                                              |   |                            |  |  |
|----|----------------------------------------------|---|----------------------------|--|--|
|    | and Applications                             |   | West Press.                |  |  |
| 4. | Discrete Mathematics<br>and its Applications | - | Tata McGraw Hills          |  |  |
| 5. | Discrete mathematics                         | - | Schaum's outline<br>series |  |  |

# Minor Courses

## 24BUMT3T04

|     |                                                                      |    |
|-----|----------------------------------------------------------------------|----|
| CO1 | Summarize the concept of system of linear equations and matrices     | L2 |
| CO2 | Solve the problems based on system of linear equation                | L3 |
| CO3 | Interpret the concepts of Eigenvalues, Eigenvectors                  | L2 |
| CO4 | Apply the concepts of Eigenvalues, Eigenvectors. for diagonalization | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 1   | 1   |
| CO2 | 2   | 2   | 1   | 0   | 1   | 1   |
| CO3 | 2   | 2   | 1   | 0   | 1   | 1   |
| CO4 | 2   | 2   | 1   | 0   | 1   | 1   |

| Course Code<br><b>24BUMT3T04</b> | Course Title<br><b>Applications of Linear Algebra</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Credits<br><b>2</b> | No. of lectures<br><b>30</b> |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------|
| <b>Unit I :</b>                  | <p><b>System of linear Equations and Matrices</b></p> <p>1. Systems of homogeneous and non-homogeneous linear equations, examples of finding solutions of such systems. Geometric and algebraic understanding of the solutions. Matrices (with real entries), Matrix representation of system of homogeneous and non-homogeneous linear equations.</p> <p>2. Elementary row and column operations. Row equivalent matrices. Row reduction (of a matrix to its row echelon form). Gaussian elimination. Applications to solving systems of linear equations. Examples.</p> <p>3. Elementary matrices. Invertibility of elementary matrices. Consequences, inverse of a matrix using Gauss elimination method.</p> |                     | <b>15</b>                    |
| <b>Unit II:</b>                  | <p><b>Eigenvalues, Eigenvectors and Diagonalization</b></p> <p>1. Eigenvalues and eigenvectors of a linear transformation, Eigen spaces. Algebraic and geometric multiplicity of an eigenvalue, examples.</p> <p>2. Characteristic polynomial. Properties of characteristic polynomials (only statements). Examples. Cayley-Hamilton Theorem. Applications.</p>                                                                                                                                                                                                                                                                                                                                                  |                     | <b>15</b>                    |

|  |                                                                                                           |  |
|--|-----------------------------------------------------------------------------------------------------------|--|
|  | 3. Diagonalizable matrix, definition, properties, examples.<br>Procedure for diagonalization of a matrix. |  |
|--|-----------------------------------------------------------------------------------------------------------|--|

**Books and References:**

| Sr. No. | Title                                    | Author/s                      | Publisher                        | Edition | Year |
|---------|------------------------------------------|-------------------------------|----------------------------------|---------|------|
| 1.      | Elementary Linear Algebra                | Howard Anton,<br>Chris Rorres | Howard Wiley<br>Student Edition  | Twelfth | 2018 |
| 2.      | Introduction to Linear<br>Algebra        | Serge Lang                    | Springer<br>International Ltd.   | Second  | 2012 |
| 3.      | Linear Algebra - A<br>Geometric Approach | S Kumaresan                   | PHI Learning.                    | First   | 2000 |
| 4.      | Linear Algebra Done Right                | Sheldon Axler                 | Springer<br>International Ltd.   | Fourth  | 2023 |
| 5.      | Linear Algebra with<br>Applications      | Gareth<br>Williams            | Jones and Bartlett<br>Publishers | Second  | 2000 |

# Generic Elective Course

## 24BUMT3T05

|     |                                                                                         |    |
|-----|-----------------------------------------------------------------------------------------|----|
| CO1 | Outline graph of standard functions                                                     | L2 |
| CO2 | Construct graphs using shifting of graphs, stretching of graphs and reflecting graphs   | L3 |
| CO3 | Find the type of functions - increasing, decreasing, concave upwards, concave downwards | L1 |
| CO4 | Identify critical points and points of Maxima and Minima of a function                  | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 0   | 1   | 0   | 0   | 0   |
| CO2 | 2   | 0   | 1   | 0   | 0   | 0   |
| CO3 | 2   | 0   | 1   | 0   | 0   | 0   |
| CO4 | 2   | 0   | 1   | 0   | 0   | 0   |

| Course Code<br>24BUMT3T05 | Course Title<br>Graphs of Functions                                                                                                                                                                                                                                                                                                                                  | Credits<br>2 | No. of<br>lectures<br>30 |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| Unit I:                   | Definition of Graph of a function. Sketching of graphs of functions such as Constant functions, step functions, linear functions, quadratic functions, absolute value functions, trigonometric functions, exponential functions, inverse functions, logarithmic functions. Sketching of graphs using shifting of graphs, stretching of graphs and reflecting graphs. |              | 15                       |
| Unit II:                  | Increasing, decreasing functions, Maxima and Minima of a function, Concave up, concave down graphs. Point of inflection. Sketching of graphs of polynomial functions.                                                                                                                                                                                                |              | 15                       |

| Books and References: |                                |                   |                |         |      |
|-----------------------|--------------------------------|-------------------|----------------|---------|------|
| Sr. No.               | Title                          | Author/s          | Publisher      | Edition | Year |
| 1.                    | Methods of Real Analysis       | R. R. Goldberg    | Oxford and IBH |         | 1964 |
| 2.                    | Calculus and Analytic Geometry | Thomas and Finney | Addison-Wesley |         | 1998 |

|    |                                        |                                     |                             |  |      |
|----|----------------------------------------|-------------------------------------|-----------------------------|--|------|
| 3. | Introduction to Real Analysis          | R. G. Bartle and D. R. Sherbert     | John Wiley & Sons           |  | 1994 |
| 4. | A Course in Calculus and Real Analysis | Sudhir Ghorpade and Balmohan Limaye | Springer International Ltd. |  | 2000 |
| 5. | Calculus Vol.2                         | T. Apostol                          | John Wiley                  |  |      |

# Semester IV

## 24BUMT4T01

|     |                                                                                 |    |
|-----|---------------------------------------------------------------------------------|----|
| CO1 | Interpret the concepts of functions of several variables.                       | L2 |
| CO2 | Solve Limits, Continuity and Derivative of scalar and vector field functions.   | L3 |
| CO3 | Interpret the concept of Derivative of scalar field and vector field functions. | L2 |
| CO4 | Solve Derivatives of Scalar and Vector field functions.                         | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 2   | 1   | 0   | 1   | 0   |

| Course Code<br>24BUMT4T01 | Course Title<br>Multivariable Calculus I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Credits<br>2 | No. of<br>lectures<br>30 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| Unit I :                  | <b>Functions of Several Variables</b> <ol style="list-style-type: none"> <li>Review of vectors in <math>R^n</math> and basic notations such as addition and scalar multiplication, inner product, length (norm), and distance between two points.</li> <li>Real valued functions of several variables (Scalar fields), Vector valued functions of several variables (Vector fields). Component functions. Examples.</li> <li>Sequences, Limits and Continuity: Sequences in <math>R^n</math> and their limits, Neighborhood's in <math>R^n</math>. Limits and continuity of scalar fields. Composition of continuous functions. Sequential characterizations. Algebra of limits and continuity. Iterated limits. Limits and continuity of vector fields. Algebra of Limits and continuity of vector fields.</li> <li>Partial and directional derivatives of scalar fields. Definitions of directional derivatives and partial derivatives of scalar fields. Mean Value Theorem of scalar fields</li> </ol> | 15           |                          |
| Unit II:                  | <b>Differentiation of Scalar Fields</b> <ol style="list-style-type: none"> <li>Differentiability of Scalar Fields (in terms of linear transformation). The concept of total derivative. Uniqueness</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15           |                          |

|  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | <p>of total derivative of a differentiable function at a point. Examples of a function of two or three variables. Increment theorem. Basic properties including (i) continuity at a point of differentiability, (ii) existence of partial derivatives at a point of differentiability and (iii) differentiability when the partial derivatives exist and are continuous.</p> <p>2. Gradient. Relation between total derivative and gradient of a function. Chain Rule. Geometric properties of Gradient. Tangent planes.</p> <p>3. Euler's Theorem. Higher order partial derivatives. Mixed partial theorem (<math>n = 2</math>).</p> |  |
|--|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

#### **Books and references:**

| Sr. No. | Title                                           | Author/s         | Publisher              | Edition | Year |
|---------|-------------------------------------------------|------------------|------------------------|---------|------|
| 1       | Calculus Vol.2                                  | T. Apostol       | John Wiley             |         |      |
| 2       | A course in Multivariable calculus and Analysis | Ghorpade, Limaye | Springer               |         |      |
| 3       | Principals of Mathematical Analysis             | Walter Rudin     | McGraw- Hill           |         |      |
| 4       | Calculus                                        | K. Stewart       | Brooke/Cole publishing |         |      |

## **24BUMT4T02**

|     |                                                             |    |
|-----|-------------------------------------------------------------|----|
| CO1 | Summarize the concept of Linear Transformations             | L2 |
| CO2 | Solve the problems based on Linear Transformations.         | L3 |
| CO3 | Interpret the concepts of Inner Products                    | L2 |
| CO4 | Apply the concepts of Orthogonal sets and Orthogonal Basis. | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 2   | 1   | 0   | 1   | 0   |

| Course Code<br>24BUMT4T02 | Course Title<br>Linear Algebra II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Credits<br>2 | No. of<br>lectures<br>30 |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| Unit I :                  | <b>Linear Transformations</b> <ol style="list-style-type: none"> <li>1. Definition of a linear transformation of vector spaces; elementary properties. Examples. Sums and scalar multiples of linear transformations. Composites of linear transformations.</li> <li>2. Null-space (kernel) and the image (range) of a linear transformation. Nullity and Rank of a linear transformation. Rank-Nullity Theorem.</li> <li>3. Matrix associated with linear transformation. Matrix of the composite of two linear transformations. Invertible linear transformations (isomorphism), Linear Operator.</li> </ol>                                                                                                                                                                             |              | 15                       |
| Unit II :                 | <b>Inner Products and Orthogonality</b> <ol style="list-style-type: none"> <li>1. Inner product spaces (over R). Examples, Norm associated to an inner product. Cauchy-Schwarz inequality. Triangle inequality.</li> <li>2. Angle between two vectors. Orthogonality of vectors. Pythagoras theorem and some geometric applications in <math>\mathbb{R}^2</math>. Orthogonal sets, Orthonormal sets. Gram-Schmidt Orthogonalization process. Orthogonal basis and orthonormal basis for a finite-dimensional inner product space.</li> <li>3. Orthogonal complement of any set of vectors in an inner product space. Orthogonal decomposition of an inner product space with respect to its subspace. Orthogonal projection of a vector onto a line (one dimensional subspace).</li> </ol> |              | 15                       |

| Books and References: |                                          |                               |                                 |         |      |
|-----------------------|------------------------------------------|-------------------------------|---------------------------------|---------|------|
| Sr. No.               | Title                                    | Author/s                      | Publisher                       | Edition | Year |
| 1.                    | Elementary Linear Algebra                | Howard Anton,<br>Chris Rorres | Howard Wiley<br>Student Edition | Twelfth | 2018 |
| 2.                    | Introduction to Linear<br>Algebra        | Serge Lang                    | Springer<br>International Ltd.  | Second  | 2012 |
| 3.                    | Linear Algebra - A<br>Geometric Approach | S Kumaresan                   | PHI<br>Learning.                | First   | 2000 |
| 4.                    | Linear Algebra Done Right                | Sheldon Axler                 | Springer<br>International Ltd.  | Fourth  | 2023 |

## 24BUMT4T03

|     |                                                                                               |  |  |    |
|-----|-----------------------------------------------------------------------------------------------|--|--|----|
| CO1 | Solve higher order homogeneous linear differential equations with constant coefficients       |  |  | L3 |
| CO2 | Apply inverse differential operators of standard functions                                    |  |  | L3 |
| CO3 | Solve homogeneous linear system of ordinary differential equations with constant coefficients |  |  | L3 |
| CO4 | Construct explicit solutions of non-homogeneous linear systems with constant coefficients     |  |  | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|                           | PO1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PO2 | PO3 | PO4          | PO5                      | PO6 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|--------------|--------------------------|-----|
| CO1                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   | 1   | 0            | 1                        | 0   |
| CO2                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   | 1   | 0            | 1                        | 0   |
| CO3                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   | 1   | 0            | 1                        | 0   |
| CO4                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0   | 1   | 0            | 1                        | 0   |
| Course Code<br>24BUMT4T03 | Course Title<br>Ordinary Differential Equations II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |     | Credits<br>2 | No. of<br>lectures<br>30 |     |
| Unit I :                  | <b>Higher order Linear Differential Equations</b> <ol style="list-style-type: none"> <li>Higher order homogeneous linear differential equations with constant coefficients, the auxiliary equations, Roots of the auxiliary equations: real and distinct, real and repeated, complex and complex repeated.</li> <li>Higher order homogeneous linear differential equations with constant coefficients, the auxiliary equations, Roots of the auxiliary equations: real and distinct, real and repeated, complex and complex repeated.</li> <li>An existence and uniqueness theorem, Wronskian and linear independence, General solution of homogeneous and non-homogeneous LDE (without proof)</li> <li>The Differential operator and its properties, The inverse differential operator and particular integral, Evaluation of <math>\frac{1}{f(D)}</math>.</li> </ol> |     |     |              |                          | 15  |

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <b>Unit II :</b> | <p><b>Linear System of Ordinary Differential Equations</b></p> <ol style="list-style-type: none"> <li>1. Study of homogeneous linear system of ODEs in two variables, Existence and uniqueness theorems (only statement)</li> <li>2. The Wronskian <math>W(t)</math> of two solutions of a homogeneous linear system of ODEs in two variables, result: <math>W(t)</math> is identically zero or nowhere zero on <math>[a, b]</math>. Two linearly independent solutions and the general solution of a homogeneous linear system of ODEs in two variables.</li> <li>3. Explicit solutions of Homogeneous linear systems with constant coefficients in two variables, examples.</li> <li>4. Explicit solutions of non-homogeneous linear systems with constant coefficients in two variables, examples.</li> </ol> | <b>15</b> |
|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|

| <b>Books and References:</b> |                                                               |                                                              |                             |                |             |
|------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|-----------------------------|----------------|-------------|
| <b>Sr. No.</b>               | <b>Title</b>                                                  | <b>Author/s</b>                                              | <b>Publisher</b>            | <b>Edition</b> | <b>Year</b> |
| 1.                           | Ordinary Differential Equations A First Course                | D Somasundaram                                               | Narosa                      |                | 2005        |
| 2.                           | Differential equations with applications and historical notes | George F. Simmons                                            | McGraw Hill Education       | Second         | 2017        |
| 3.                           | Elementary Differential Equations                             | Earl D. Rainville, Phillip E. Bedient and Richard E. Bedient | Publisher Pearson Education | Eight          | 2016        |
| 4.                           | Ordinary And Partial Differential Equations                   | M. D. Raisinghania                                           | S. Chand                    |                | 2005        |
| 5.                           | An Introduction to Ordinary Differential Equations            | E. A. Coddington                                             | Dover Books                 |                | 1989        |
| 6.                           | Ordinary Differential Equations: Principles and Applications  | A. K. Nandakumaran, P. S. Datti and Raju K. George           | Cambridge University Press  | First          | 2017        |

## 24BUMT4P01

|     |                                                                                                              |    |
|-----|--------------------------------------------------------------------------------------------------------------|----|
| CO1 | Solve problems on Limits and continuity of Scalar and vector field functions.                                | L2 |
| CO2 | Solve problems on Derivatives of Scalar field and vector field functions.                                    | L2 |
| CO3 | Solve problems on Higher Order Derivative                                                                    | L3 |
| CO4 | Solve higher order homogeneous and non- homogeneous linear differential equations with constant coefficients | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO4 | 2   | 0   | 0   | 0   | 3   | 0   |

| Course Code<br><b>24BUMT4P01</b> | Course Title<br><b>Practical based on 24BUMT4T01 and 24BUMT4T03</b>                   | Credits<br><b>2</b> | No. of lectures<br><b>60</b> |
|----------------------------------|---------------------------------------------------------------------------------------|---------------------|------------------------------|
| Practical 1                      | Limits of Scalar fields and vector fields. Iterated limits.                           | 4                   |                              |
| Practical 2                      | Limits of Vector fields.                                                              | 4                   |                              |
| Practical 3                      | Iterated Limits, Limit along path                                                     | 4                   |                              |
| Practical 4                      | Continuous scalar field functions.                                                    | 4                   |                              |
| Practical 5                      | Computing directional derivatives, Partial derivatives.                               | 4                   |                              |
| Practical 6                      | Mean Value Theorem of scalar fields.                                                  | 4                   |                              |
| Practical 7                      | Differentiability of scalar fields. Total derivative. Gradient.                       | 4                   |                              |
| Practical 8                      | Chain Rule                                                                            | 4                   |                              |
| Practical 9                      | Higher order derivative and mixed partial derivative of scalar fields.                | 4                   |                              |
| Practical 10                     | Miscellaneous Theoretical Questions based on paper I                                  | 4                   |                              |
| Practical 11                     | Wronskian in higher order linear differential equations                               | 4                   |                              |
| Practical 12                     | General solution of homogeneous higher order linear ODE with constant coefficients    | 4                   |                              |
| Practical 13                     | Particular solution of homogeneous higher order linear ODE with constant coefficients | 4                   |                              |

|              |                                    |           |
|--------------|------------------------------------|-----------|
| Practical 14 | UDC method                         | 4         |
| Practical 15 | Inverse Differential Operators - I | 4         |
|              | <b>Total</b>                       | <b>60</b> |

## **24BUMT4P02**

|     |                                                                                                           |    |
|-----|-----------------------------------------------------------------------------------------------------------|----|
| CO1 | Solve problems on concept of Linear Transformations and Inner Products                                    | L2 |
| CO2 | Solve problems on the concepts of Rank-Nullity theorem and Linear Isomorphism.                            | L3 |
| CO3 | Solve problems on the concepts of Orthogonal sets and Orthogonal Basis.                                   | L3 |
| CO4 | Construct explicit solutions of homogeneous and non-homogeneous linear systems with constant coefficients | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO2 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO3 | 2   | 2   | 1   | 0   | 3   | 0   |
| CO4 | 2   | 0   | 0   | 0   | 3   | 0   |

| Course Code<br><b>24BUMT4P02</b> | Course Title<br><b>Practical based on 24BUMT4T02 and 24BUMT4T03</b> | Credits<br><b>2</b> | No. of lectures<br><b>60</b> |
|----------------------------------|---------------------------------------------------------------------|---------------------|------------------------------|
| Practical 1                      | Linear transformation                                               | 4                   |                              |
| Practical 2                      | Kernel and Image of Linear transformation                           | 4                   |                              |
| Practical 3                      | Problems on Rank-Nullity Theorem                                    | 4                   |                              |
| Practical 4                      | Linear Isomorphism of Linear transformation                         | 4                   |                              |
| Practical 5                      | Matrix associated with Linear transformations                       | 4                   |                              |
| Practical 6                      | Inner product and properties                                        | 4                   |                              |
| Practical 7                      | Projection, Orthogonal complements.                                 | 4                   |                              |
| Practical 8                      | Problems on Orthogonal sets, orthonormal sets                       | 4                   |                              |

|              |                                                                                                  |           |
|--------------|--------------------------------------------------------------------------------------------------|-----------|
| Practical 9  | Gram-Schmidt Orthogonalization                                                                   | 4         |
| Practical 10 | Miscellaneous Theoretical Questions based on Paper II                                            | 4         |
| Practical 11 | Inverse Differential Operators - II                                                              | 4         |
| Practical 12 | Inverse Differential Operators - III                                                             | 4         |
| Practical 13 | Wronskian in a linear system of ODE                                                              | 4         |
| Practical 14 | Explicit solutions of Homogeneous linear systems with constant coefficients in two variables     | 4         |
| Practical 15 | Explicit solutions of non-homogeneous linear systems with constant coefficients in two variables | 4         |
|              | <b>Total</b>                                                                                     | <b>60</b> |

## Field Project in Mathematics II

### 24BUMT4P03

|     |                                                                                                                                                     |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------|----|
| CO1 | Formulate an appropriate research problem for field project                                                                                         | L6 |
| CO2 | Apply theoretical mathematical concepts to real-world situations or other disciplines, such as physics, engineering, economics, or computer science | L3 |
| CO3 | Conclude the results of the project                                                                                                                 | L5 |
| CO4 | Demonstrate the results through a report and presentation.                                                                                          | L2 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 2   | 0   | 1   | 1   |
| CO2 | 2   | 2   | 2   | 0   | 1   | 1   |
| CO3 | 2   | 2   | 2   | 0   | 1   | 1   |
| CO4 | 2   | 2   | 2   | 0   | 1   | 1   |

# Skill Enhancement Course

24BU4SEC03

|     |                                                                                |    |
|-----|--------------------------------------------------------------------------------|----|
| CO1 | Solve matrices to find Eigen Values and Eigen vectors.                         | L3 |
| CO2 | Apply the Cayley-Hamilton theorem and properties of characteristic polynomials | L3 |
| CO3 | Apply the procedure of Diagonalization of Matrix.                              | L3 |
| CO4 | Apply to quadratic forms and classification of conic sections.                 | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 0   | 1   | 0   | 1   | 0   |
| CO2 | 2   | 0   | 1   | 0   | 1   | 0   |
| CO3 | 2   | 0   | 1   | 0   | 1   | 0   |
| CO4 | 2   | 0   | 1   | 0   | 1   | 0   |

| Course Code<br>24BU4SEC03 | Course Title<br>Linear Algebra III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Credits<br>2 | No. of<br>lectures<br>45 |
|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| Unit I:                   | <p><b>Eigenvalues, Eigenvectors and Diagonalization</b></p> <ol style="list-style-type: none"> <li>1. Eigenvalues and eigenvectors of a linear transformation of a vector space into itself and of square matrices. The eigenvectors corresponding to distinct eigenvalues of a linear transformation are linearly independent. Eigen spaces. Algebraic and geometric multiplicity of an eigenvalue.</li> <li>2. Characteristic polynomial. Properties of characteristic polynomials (only statements). Examples. Cayley-Hamilton Theorem. Applications.</li> <li>3. Invariance of the characteristic polynomial and eigenvalues of similar matrices.</li> <li>4. Diagonalizable matrix. A real square matrix <math>A</math> is diagonalizable if and only if there is a basis of <math>\mathbb{R}^n</math> consisting of eigenvectors of <math>A</math>. (Statement only – <math>A_{n \times n}</math> is diagonalizable if and only if sum of algebraic multiplicities is equal to sum of geometric multiplicities of all the eigenvalues of <math>A = n</math>). Procedure for diagonalization of a matrix.</li> </ol> |              | 15                       |

|                     |                                                                                                                                                                                                            |           |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                     | 5. Spectral Theorem for Real Symmetric Matrices (Statement only). Examples of orthogonal diagonalization of real symmetric matrices. Applications to quadratic forms and classification of conic sections. |           |
| <b>Practical 1</b>  | Eigenvalues of $2 \times 2$ matrix                                                                                                                                                                         | <b>3</b>  |
| <b>Practical 2</b>  | Eigenvalues of $3 \times 3$ matrix                                                                                                                                                                         | <b>3</b>  |
| <b>Practical 3</b>  | Eigenvectors                                                                                                                                                                                               | <b>3</b>  |
| <b>Practical 4</b>  | Eigenspaces                                                                                                                                                                                                | <b>3</b>  |
| <b>Practical 5</b>  | Cayley Hamilton Theorem                                                                                                                                                                                    | <b>3</b>  |
| <b>Practical 6</b>  | Geometric and Algebraic Multiplicity of Eigenvalue                                                                                                                                                         | <b>3</b>  |
| <b>Practical 7</b>  | Diagonalization of matrix I                                                                                                                                                                                | <b>3</b>  |
| <b>Practical 8</b>  | Diagonalization of matrix II                                                                                                                                                                               | <b>3</b>  |
| <b>Practical 9</b>  | Orthogonal diagonalization of symmetric matrix                                                                                                                                                             | <b>3</b>  |
| <b>Practical 10</b> | Application to Conics                                                                                                                                                                                      | <b>3</b>  |
|                     | <b>Total</b>                                                                                                                                                                                               | <b>45</b> |

**Books and References:**

| Sr. No. | Title                                 | Author/s                   | Publisher                     | Edition | Year |
|---------|---------------------------------------|----------------------------|-------------------------------|---------|------|
| 1.      | Elementary Linear Algebra             | Howard Anton, Chris Rorres | Wiley Student Edition         |         |      |
| 2.      | Introduction to Linear Algebra        | Serge Lang                 | Springer International Ltd.   |         |      |
| 3.      | Linear Algebra - A Geometric Approach | S Kumaresan                | PHI Learning.                 |         |      |
| 4.      | Linear Algebra done right             | Sheldon Axler              | Springer International Ltd.   |         |      |
| 5.      | Linear Algebra with Applications      | Gareth Williams            | Jones and Bartlett Publishers |         |      |

# Minor Course

## 24BUMT4T04

|     |                                                                                                                        |    |
|-----|------------------------------------------------------------------------------------------------------------------------|----|
| CO1 | interpret the concepts of Integrations and Differentiation.                                                            | L2 |
| CO2 | solve Improper Integrals and Application of Integrations                                                               | L3 |
| CO3 | interpret the concepts of Derivatives of Scalar and Vector fields function.                                            | L2 |
| CO4 | interpret the concepts of Integrations. and Differentiation. apply Differentiation of Scalar Fields and Vector Fields. | L3 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 2   | 1   | 0   | 1   | 1   |
| CO2 | 2   | 2   | 1   | 0   | 1   | 1   |
| CO3 | 2   | 2   | 1   | 0   | 1   | 1   |
| CO4 | 2   | 2   | 1   | 0   | 1   | 1   |

| Course Code<br>24BUMT4T04 | Course Title<br>Applications of Calculus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Credits<br>2 | No. of<br>lectures<br>30 |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| <b>Unit I :</b>           | <b>Application of Integrations and Improper Integrals</b><br>1. Area between the two curves. Lengths of plane curves. Surface area of surfaces of revolution. First and Second Fundamental Theorems of Calculus.(statements only) Mean Value Theorem. Integration by parts formula. Leibnitz's rule.<br>2. Definitions of two types of improper integrals. Necessary and sufficient condition for convergence. Absolute convergence. Comparison and Limit form of Comparison test for convergence. Gamma and Beta functions and their properties. Relationship between Gamma and Beta function. |              | <b>15</b>                |
| <b>Unit II:</b>           | <b>Applications of Differentiation of Scalar Fields and Vector Fields</b><br>1. Application of Differentiation of Scalar Fields. The maximum and minimum rate of change of Scalar Field. Taylor's Theorem for twice continuously differentiable function. Notion of local maxima, local minima and saddle points. First Derivative Test. Examples.                                                                                                                                                                                                                                              |              | <b>15</b>                |

|  |                                                                                                                                                                                                                                                                                                        |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|  | 2. Differentiation of Vector Fields. Differentiability and the notion of total derivative. Differentiability of a vector field implies continuity. Jacobian Matrix. Relationship between the total derivative and Jacobian matrix. The chain rule for derivative of a vector fields (statements only). |  |
|--|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

**Books and References:**

| Sr. No. | Title                                           | Author/s         | Publisher      | Edition | Year |
|---------|-------------------------------------------------|------------------|----------------|---------|------|
| 1       | Methods of Real Analysis                        | R. R. Goldberg   | Oxford and IBH | Second  | 1964 |
| 2       | Calculus Vol.2                                  | T. Apostol       | John Wiley     | Second  |      |
| 3       | A course in Multivariable calculus and Analysis | Ghorpade, Limaye | Springer       | Second  | 2009 |
| 4       | Principles of Mathematical Analysis             | Walter Rudin     | McGraw- Hill   | Third   | 2023 |

# Generic Elective Course

## 24BUMT4T05

|     |                                                                                                            |    |
|-----|------------------------------------------------------------------------------------------------------------|----|
| CO1 | Solve iteration methods for finding approximate solution of algebraic and transcendental equations         | L3 |
| CO2 | Apply direct methods and iterative methods for solving system of linear equations                          | L3 |
| CO3 | Apply methods for finding polynomial approximation using interpolation, linear and quadratic curve fitting | L3 |
| CO4 | Find derivative and integration using numerical methods                                                    | L1 |

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No mapping

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 |
|-----|-----|-----|-----|-----|-----|-----|
| CO1 | 2   | 1   | 1   | 0   | 0   | 0   |
| CO2 | 2   | 1   | 1   | 0   | 0   | 0   |
| CO3 | 2   | 1   | 1   | 0   | 0   | 0   |
| CO4 | 2   | 1   | 1   | 0   | 0   | 0   |

| Course Code<br>24BUMT4T05 | Course Title<br>Numerical Methods                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Credits<br>2 | No. of<br>lectures<br>30 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------|
| Unit I:                   | <b>Solution of Algebraic Equations, Transcendental Equations and System of Linear Equations</b> <ol style="list-style-type: none"> <li>Iteration methods for simple roots: Method of bisection, Newton-Raphson method, Secant method, Regula-Falsi method and Fixed point iteration method</li> <li>Direct methods for solving system of linear equations: Gauss Elimination method and Cramer's rule</li> <li>Iterative methods for solving system of linear equations: Gauss-Jacobi Iteration method, Gauss-Seidel Iteration method</li> </ol>     |              | 15                       |
| Unit II:                  | <b>Interpolation and Curve fitting, Numerical Differentiation and Integration</b> <ol style="list-style-type: none"> <li>Interpolation: Lagrange's Interpolation, Newton's forward difference interpolation and Newton's backward difference interpolation</li> <li>Curve fitting: Linear and Quadratic</li> <li>Numerical Differentiation based on Newton's forward difference interpolation and Newton's backward difference interpolation</li> <li>Numerical Integration: Trapezoidal Rule, Simpson's 1/3rd Rule, Simpson's 3/8th Rule</li> </ol> |              | 15                       |

| <b>Books and References:</b> |                                                              |                                               |                                    |                |             |
|------------------------------|--------------------------------------------------------------|-----------------------------------------------|------------------------------------|----------------|-------------|
| <b>Sr. No.</b>               | <b>Title</b>                                                 | <b>Author/s</b>                               | <b>Publisher</b>                   | <b>Edition</b> | <b>Year</b> |
| 1.                           | An Introduction to Numerical Analysis                        | Kendall E. and Atkinson                       | Wiley                              |                |             |
| 2.                           | Numerical Methods for Scientific and Engineering Computation | M. K. Jain, S. R. K. Iyengar and R. K. Jain   | New Age International Publications |                |             |
| 3.                           | Introductory methods of Numerical Analysis                   | S. Sastry                                     | PHI Learning                       |                |             |
| 4.                           | Numerical Methods: Fundamentals and Applications             | Rajesh Kumar Gupta                            | Cambridge University Press         |                | 2019        |
| 5.                           | Numerical Methods                                            | P. Kandasamy, K. Thilagavathy and K. Gunavati | S Chand                            |                | 2006        |
| 6.                           | Numerical Methods                                            | E. Bal Guruswamy                              | McGraw Hill Education              |                | 2017        |

**Curriculum mapping for the Undergraduate Degree Programme S.Y.B.Sc. Mathematics**

|                    | <b>SEMESTER – III</b>               | Course imparts Employability (EM), Entrepreneurship (EN), Skill Development (SD) |    |          | Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES) |    |    |    |
|--------------------|-------------------------------------|----------------------------------------------------------------------------------|----|----------|--------------------------------------------------------------------------------------------------------------------------|----|----|----|
| <b>Course Code</b> | <b>Major Course Title</b>           | EM                                                                               | EN | SD       | PE                                                                                                                       | GE | HV | ES |
| <b>24BUMT3T01</b>  | Calculus III                        |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>24BUMT3T02</b>  | Linear Algebra I                    |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>24BUMT3T03</b>  | Ordinary Differential Equations I   |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>24BUMT3P01</b>  | Practical based on Paper I and III  |                                                                                  |    | ✓        |                                                                                                                          |    |    |    |
| <b>24BUMT3P02</b>  | Practical based on Paper II and III |                                                                                  |    | ✓        |                                                                                                                          |    |    |    |
| <b>24BUMT3P03</b>  | Field Project in Mathematics I      |                                                                                  |    | ✓        |                                                                                                                          |    |    |    |
| <b>24BU3SEC03</b>  | Combinatorics II                    |                                                                                  |    |          |                                                                                                                          |    |    |    |
|                    | <b>Minor Course Title</b>           |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>24BUMT3T04</b>  | Applications of Linear Algebra      |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>Course Code</b> | <b>Generic - Course Title</b>       |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>24BUMT3T05</b>  | Graphs of functions                 |                                                                                  |    |          |                                                                                                                          |    |    |    |
| <b>09</b>          | <b>Total</b>                        |                                                                                  |    | <b>3</b> |                                                                                                                          |    |    |    |

|                    | <b>SEMESTER – IV</b>                | <b>Course</b> | <b>imparts</b> | <b>Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)</b> |           |           |           |           |
|--------------------|-------------------------------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|-----------|-----------|
| <b>Course Code</b> | <b>Major Course Title</b>           | <b>EM</b>     | <b>EN</b>      | <b>SD</b>                                                                                                                       | <b>PE</b> | <b>GE</b> | <b>HV</b> | <b>ES</b> |
| <b>24BUMT4T01</b>  | Multivariable Calculus I            |               |                |                                                                                                                                 |           |           |           |           |
| <b>24BUMT4T02</b>  | Linear Algebra II                   |               |                |                                                                                                                                 |           |           |           |           |
| <b>24BUMT4T03</b>  | Ordinary Differential Equations II  |               |                |                                                                                                                                 |           |           |           |           |
| <b>24BUMT4P01</b>  | Practical based on Paper I and III  |               |                | ✓                                                                                                                               |           |           |           |           |
| <b>24BUMT4P02</b>  | Practical based on Paper II and III |               |                | ✓                                                                                                                               |           |           |           |           |
| <b>24BUMT4P03</b>  | Field Project in Mathematics II     |               |                | ✓                                                                                                                               |           |           |           |           |
| <b>24BU4SEC03</b>  | Linear Algebra III                  |               |                |                                                                                                                                 |           |           |           |           |
|                    | <b>Minor Course Title</b>           |               |                |                                                                                                                                 |           |           |           |           |
| <b>24BUMT4T04</b>  | Applications of Calculus            |               |                |                                                                                                                                 |           |           |           |           |
| <b>Course Code</b> | <b>Generic - Course Title</b>       |               |                |                                                                                                                                 |           |           |           |           |
| <b>24BUMT4T05</b>  | Numerical Methods                   |               |                |                                                                                                                                 |           |           |           |           |
| <b>09</b>          |                                     | <b>Total</b>  |                | 3                                                                                                                               |           |           |           |           |