Academic Council Meeting No. and Date: 9 / July 02, 2024

Agenda Number: 3 Resolution Number: 41, 42/3.17 & 3.37

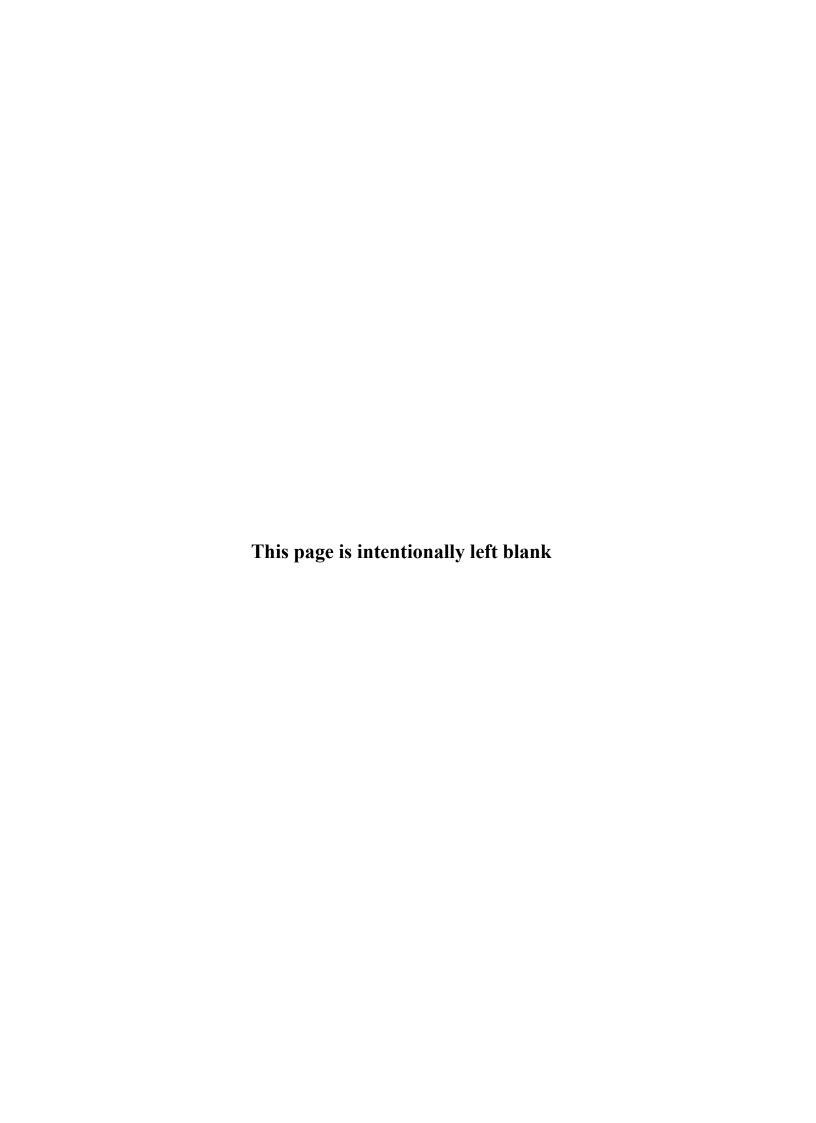
Vidya Prasarak Mandal's B. N. Bandodkar College of Science (Autonomous), Thane

Syllabus for

Programme: Master of Science Specific Programme:

BIODIVERSITY, WILDLIFE CONSERVATION & MANAGEMENT

[BWCM]


[M.Sc. (Semester III and IV)]

Level 6.0 and 6.5

CHOICE BASED GRADING SYSTEM

Revised under NEP and Autonomy

From academic year 2024-25

Sr. no	Heading	Particulars
1	Title of the course	M.Sc. in Biodiversity, Wildlife Conservation and Management
2	Eligibility for Admission	 4 year integrated B.Sc. in ANY subject/ Biological Sciences or its equivalent. PG Diploma in Biodiversity, Wildlife Conservation and Management
3	Passing Marks	40%
4	Ordinances/Regulations (if any)	Nil
5	No of Years/Semesters	Two years, Four semesters
6	Level	P.G. 6.0 & 6.5
7	Pattern	Semester
8	Status	Revised under Autonomy as per NEP 2020
9	To be Implemented from Academic Year	2024-25

BOS Chairperson: Dr. Urmila Kumavat

					odkar College of S				,	
Year	LEVEL	SEMESTER	I I		gram in Biodiversity,	Wildlife Conser Research	vation and Man On Job	agement Research	Cum	Degrees
(2 Yrs)	(rs) Manda			Electives anyone	Methodology	0 0 0 10	project	Credits		
		SEM-I	3*4+2	2 = 14	Credits 4		pg			
			Course 1	Credits 4	Course 1= Credits 4					
			Course 2	Credits 4	OR	Credits 4	NT A	NT A		
			Course 3	Credits 4	Course 2 = Credits 4	Credits 4	NA	NA	22	
I	6.0		Course 4	Credits 2	OR					PG Diploma in
					<u> </u>					Biodiversity, Wildlife
		SEM-II	Course 1	Credits 4	Course 1 = Credits 4					Conservation and
			Course 2	Credits 4	OR		G 124 4	NT A	22	Management
			Course 3	Credits 4	Course 2 = Credits 4	- NA	Credits 4	NA		(After 3 Yrs. degree UG)
			Course 4	Credits 2	OR					
Cum Cr	for 1 Yr.	PG Diploma	28		8	4	4		44	
		SEM- III	Course 1	Credits 4	Course 1 Credits 4					
			Course 2	Credits 4	OR	NA	NA	Credits 4	22	
			Course 3	Credits 4	Course 2 Credits 4	1171	1471	Ci cuits 4	22	
II	6.5		Course 4	Credits 2	OR					
										Master program in
		SEM IV	Course 1	Credits 4	Course 1 Credits 4	T				Biodiversity, Wildlife Conservation and
			Course 2	Credits 4	OR	- -	NIA	C I''	22	Management
			Course 3	Credits 4	Course 2 Credits 4	- NA	NA	Credits 6	22	(After 3 Yrs. degree UG)
					OR					
		rated 1 Yr. PG	Ŭ	26	8			10	44	
Cu	m Cr. fo	r 2 Yr. PG D	egree	44	16	4	4	10	88	

PREAMBLE

The potential source of income for the nation is its biodiversity, which is woefully underutilized. The shortage of skilled laborers is one of the causes of underutilization. Taxonomists and ecologists who prefer the field and functional and molecular biologists who prefer the lab make up the majority of the current generation of biologists. This gap has grown to be a barrier to understanding biodiversity. By concurrently encouraging expertise in field and lab biology, the current approach aims to close the gap. This capacity-building activity will contribute to the creation of wealth through making responsible and sustainable use of the nation's bio resources. The two-year postgraduate program M. Sc. Biodiversity Wildlife Conservation and Management consists of four semesters. The vitally important subject of biodiversity is covered comprehensively in the syllabus proposed below.

The course is divided into four semesters: the first year, which consists of two semesters, is heavily focused on the field, while the second year is focused on the lab as well as field.

First semester consists of ecology and plant and animal diversity. Second semester focuses on conservation biology which is a need of an hour. It will help students become a competent naturalist and ecologist because they place equal emphasis on conceptual and empirical knowledge of how natural systems function.

Third and Fourth semester comprises crucial topics like study of ecotourism, wildlife forensics, acts and laws of environment and wildlife, environmental journalism etc. It will expose students to apply and utilize the knowledge gained in the first year of the course and learn some new techniques for future use.

> PROGRAMME OUTCOMES (POs) OF MASTERS IN SCIENCE (M.Sc.)

The Postgraduate Programmes of Science are intended to cater quality education and attain holistic development of learners through the following programme outcomes:

PO1 – Domain Knowledge

Comprehend and demonstrate domain knowledge in specialized branch of science. Instil ability to apply it in upgrading professional, social and personal life.

PO2 – Development of Research Competence

Imbibe skills related to identification of research problem, formulating hypothesis, execution of research process, analysing data, interpreting the data, drawing conclusion and presenting research work. Encourage learners for doctoral studies.

PO3 - Digital Literacy

Enhance ability to access, select and use a variety of relevant information e-resources for creating new knowledge resources.

PO4 - Sensitization towards Environment

Build cohesive bond with nature by respecting natural resources, encouraging eco-friendly practices and creating awareness about sustainable development.

PO5 - Individuality and Team work

Encourage learner to work independently or in collaboration for achieving effective results through practical experiments, project work and research activities.

PO6 – Competence for Employment

Promote field work, internships, industrial training, research projects, research paper presentations and publications to develop competence for adapting towards dynamic socio-economic changes and make learner employable.

Eligibility:

- B.Sc in ANY subject or its equivalent.
- B.Sc. Veterinary Science or its equivalent.
- B.Sc. Agriculture OR Forestry or its equivalent.

Duration: 2 years (Level 6.0 and 6.5)

Mode of Conduct: Laboratory practicals / Offline lectures / Online lectures

Total Credits for the Program: 88

Starting year of implementation: 2024-25

> PROGRAM SPECIFIC OUTCOMES (PSOS) FOR MSC BIODIVERSITY, WILDLIFE CONSERVATION AND MANAGEMENT

PSO1: Comprehend Fundamental Concepts in Biodiversity and Ecology (linked to PO1) Recall and understand foundational concepts related to biodiversity, ecological dynamics, environmental regulations, and plant and animal diversity to establish a strong knowledge base. [Bloom's Level: L1 (Remembering), L2 (Understanding)]

PSO2: Apply Scientific Principles, Technological Tools, and Conservation Strategies (linked to PO3, PO6)

Utilize field techniques, bioanalytical tools, digital technologies such as GIS and RS, and wildlife management strategies to implement effective and practical conservation practices. [Bloom's Level: L3 (Applying)]

PSO3: Develop Research and Analytical Competence (linked to PO2) Formulate research hypotheses, design experiments, analyze data using biostatistical methods, and interpret results to address biodiversity and conservation challenges effectively. [Bloom's Level: L3 (Applying), L4 (Analyzing)]

PSO4: Analyze and Mitigate Conservation and Human-Wildlife Conflict Issues (linked to PO4) Assess ecological patterns, human-wildlife conflicts, and socio-economic challenges, and propose evidence-based solutions through the evaluation of relevant data and scenarios. [Bloom's Level: L4 (Analyzing), L5 (Evaluating)]

PSO5: Demonstrate Proficiency in Legal, Ethical, and Forensic Aspects (linked to PO5, PO6) Apply legal frameworks, including Intellectual Property Rights (IPR), wildlife forensics, and environmental regulations, alongside ethical principles to ensure integrity and accountability in conservation practices. [Bloom's Level: L5 (Evaluating)]

PSO6: Innovate and Promote Sustainability through Multidisciplinary Approaches (linked to PO4, PO6)

Synthesize knowledge from biodiversity, transgenics, artificial intelligence, and environmental science to design initiatives for eco-literacy, sustainable development, and innovative conservation efforts. **[Bloom's Level:** L5 (Evaluating), L6 (Creating)]

ASSESSMENT: WEIGHTAGE FOR ASSESSMENTS (IN PERCENTAGE) FOR MANDATORY AND ELECTIVE COURSE

Type of Course	Formative Assessment / Internal Assessment	Summative Assessment
Theory	40%	60%
Practical	-	100%

Internals Based on Unit 1 / Unit 2 / Unit 3 / Unit 4

Assignments/ Tutorials	Seminar	Ppt/video Presentation	Group discussion	Active Participation & Leadership qualities	Total
10	10	10	05	05	40

VPM's B. N. Bandodkar College of Science (Autonomous), Thane M.Sc. in Biodiversity, Wildlife Conservation and Management

Structure of Programme

Class	Sem	Course type	Course Code	Course Title	Credits
Part 2	SEM 3	MANDATORY	24BPBW3T01	Fundamentals of Microbiology, Transgenics and Phylogenetics	4
			24BPBW3T02	Techniques of Wildlife Management and Biostatistics	4
			24BPBW3T03	Applications of Information Technology in Field Biology	4
			24BPBW3P01	Practicals based on 24BPBW3T01, 24BPBW3T02, 24BPBW3T03	2
		ELECTIVE	24BPBW3T04	Monitoring and Assessing Environment	2
			24BPBW3P02	Practicals based on 24BPBW3T04	2
				OR	
			24BPBW3T05	Intellectual Property Rights (IPR) for Biodiversity and Wildlife	2
			24BPBW3P03	Practicals based on 24BPBW3T05	2
			24BPBW3RP3	Research Project – I based on Biodiversity, Wildlife Conservation and Management	4
				Total	22
	SEM	MANDATORY	24BPBW4T01	Important Acts, Regulations and Organizations	4
	4		24BPBW4T02	Human Wildlife Conflicts and Mitigation	4
			24BPBW4T03	Wildlife Forensic Science	4
		ELECTIVE	24BPBW4T04	Eco Journalism and Eco Literacy	2
			24BPBW4P01	Practicals based on 24BPBW4T04	2
				OR	
			24BPBW4T05	Biodiversity and Artificial Intelligence	2
			24BPBW4P02	Practicals based on 24BPBW4T05	2
			24BPBW4RP3	Research Project – II based on Biodiversity, Wildlife Conservation and Management	6
				Total	22
ТОТА	L SEM	3 & SEM 4			44

Mode of Conduct: Laboratory and field practical / Offline / Online / Hybrid mode

VPM's B.N. Bandodkar College of Science (Autonomous), Thane Curriculum Structure for the Post Graduate Degree Programme M.Sc. Biodiversity, Wildlife Conservation and Management (Part I)

	SEMESTER - III	Emple Entre (EN),	preneui	y (EM), rship	Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)			
Course Code	Mandatory Course Title	EM	EN	SD	PE	GE	HV	ES
24BPBW3T01	Fundamentals of Microbiology, Transgenics and Phylogenetics	√	-	✓	-	-	-	-
24BPBW3T02	Techniques of Wildlife Management and Biostatistics	√	-	√	-	-	-	√
24BPBW3T03	Applications of Information Technology in Field Biology		-	√	-	-	_	-
24BPBW3P01	Practicals based on 24BPBW3T01, 24BPBW3T02, 24BPBW3T03	√	-	√	-	-	-	✓
	Elective Course Title							
24BPBW3T04	Monitoring and Assessing Environment	✓	√	√	-	_	-	\
24BPBW3P02	Practicals based on 24BPBW3T04	√	✓	√	-	-	-	√
	OR							
24BPBW3T05	Intellectual Property Rights (IPR) for Biodiversity and Wildlife	√	√	√	-	-	-	√
24BPBW3P03	Practicals based on 24BPBW3T05	√	√	√	-	_	_	<
	Research Project							
24BPBW3RP3	Research Project – I based on Biodiversity, Wildlife Conservation and Management	✓	_	√	-	-	-	✓
09	Total	09	04	09	00	00	00	07

	SEMESTER - IV	Emplo Entre (EN),	preneui	y (EM), eship	Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)			
Course Code	Mandatory Course Title	EM	EN	SD	PE	GE	HV	ES
24BPBW4T01	Important Acts, Regulations and Organizations	_	_	√	_	_	_	√
24BPBW4T02	Human Wildlife Conflicts and Mitigation	-	✓	✓	-	-	√	√
24BPBW4T03	Wildlife Forensic Science	✓	-	√	-	-	✓	√
	Elective Course Title							
24BPBW4T04	Eco Journalism and Eco Literacy	✓	√	√	-	-	-	\checkmark
24BPBW4P01	Practicals based on 24BPBW4T04	√	✓	√	_	-	y (GE), H nvironme (ES)	√
	OR							
24BPBW4T05	Biodiversity and Artificial Intelligence	✓	_	√	_	_	_	√
24BPBW4P02	Practicals based on 24BPBW4T05	√	-	√	-	-	-	√
	Research Project							
24BPBW4RP3	Research Project – II based on Biodiversity, Wildlife Conservation and Management	✓	√	√	-	-	-	✓
08	Total	06	04	08	00	00	02	08

Dr. Urmila Kumavat BOS Chairman & Coordinator, Dept. of Biodiversity, Wildlife Conservation & Management

NOTE:

- In teaching-learning case study needs to illustrate wherever required.
- Current scenario should collaborate with the syllabus
- Field visits to nearby zoo, museum/forest/sea- shore/ nursery/ aquaria/ or any other relevant site. The report of these visits will be submitted as part of the practical work.

SEMESTER I MANDATORY

Course Title

Course Code

No. of

Credits

24BPBV	Fundamentals of Microbiology, Transgenics and								lectures 60	
Course O			111.1		<u> </u>				J.	
At the end		urse stude			rnhology	ecology	and biochemistry	L2		
CO 2										
CO 2	_									
CO 3		ne applica d organism		_			threats of genetical	ly L3		
CO 4	Examin		netic meth				quencing technique	es, L4		
Grading w	1			oderate(4)	0%-60%),	1: Low(<	<40%), 0: No Mapp	oing		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6				
CO 1	3	2	1	2	1	2				
CO 2	3	3	2	1	1	3				
CO 3	3	2	1	3	2	3	1			
CO 4	3	3	2	2	1	3				
Unit I:	Micro	obial Dive	rsity						15	
	•	Classific Major c importa Micro-on Actinom Biochem	classes of bance rganisms in the contract of t	nicroorgan pacteria of n extreme vanobacter cterization	ecologica environm ia, Myxol	l, agricul ents (eg: pacteria, l	ruses, Protists) Itural and environm temperature, pH, o Mycoplasma, Spiro Enteric bacteria, A	xygen) - ochetes		
Unit II:	Reco	mbinant I	NA techi	nology					15	
	•	DNA pro Vectors Transfor Introduc	mation of tion of for	onucleotic s (natural a Viruses a reign DNA	le synthes and artificand Bacteri Linto anim	ial), Phag a - proce nal cells &	& plant cells	/AC		
• Stability of recombinant organisms (concept of mutational rates) Unit III: GMOs and their applications (Agriculture & Animal husbandry)										

	 Trans-genesis and Genetically Modified Organisms Ecological effects and Potential threats Field trials Some success stories - insect and herbicide resistant crops, transgenic farm animals 	
Unit IV:	Malacular Evalution and Dhulaconstics	15
	 Phylogenetics - general concepts, types of cladogram, phylograms and phenograms, application Molecular evolution - general concepts, mutation and its types, application Nucleotide sequencing - concepts of Sanger, Next Gen sequencing Amino acid sequencing - concepts of Edman degradation, Mass spectrometry Molecular Evolutionary Clock & Neutral theory of molecular evolution 	

Course 24BPBW		Techniq	ues of Wi	Course Idlife Mai	e Title nagement	and Bios	statistics	Credi 04	its	No. of lectures 60
Course O	utcomes									
At the end	d of the co	ourse stude	nts will be	able to:						
CO 1	Inspect technique		s of wil	ldlife ma	nagement	and ha	abitat enha	ancement	L4	
CO 2		e commun		oation and	resource-	sharing st	rategies in		L4/L 2	
CO 3		t statistic		ds and	graphical	represen	tations to	analyze	L5	
CO 4			tests for l	hypothesis	validation	n and data	interpretat	ion.	L5	
Grading v	vill be as ?	3: High(>6	0%), 2: M	oderate(4)	0%-60%),	1: Low(<	40%), 0: N	o Mappin	g	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		11	J	
CO 1	3	2	1	3	1	2				
CO 2	3	2	1	3	3	2				
CO 3	2	3	2	1	1	3				
CO 4	2	3	2	1	1	3				
	• H • H • O • I • V	Census and Prey-predat Habitat man Nesting ma Census & e mproving of Water holes & transloca	or ratio nagement terials, Hi numeratio carrying ca s, salt licks	- Plantation des & shelen of speciapacity	ons, nesting Iters es	-	azing, contro	olled fire,	Culling	g
Unit II:	People's	s participa	tion in m	anaging p	rotected :	areas				15
	• 7 • H • H • H	Centers & I Hospitality Resource sh Case studie	skill deve odiversity nterpretati & Conduct naring & in s: (e.g. Ra	lopment of Register and to visite tours necessary the Register and tours necessary the Register and the Regi	f local hur and Critica tors tring e, Periyar,	nan resou al Wildlife Lakswad	rce e Habitat In weep, Van dible Nest	samitis, K		ga,
Unit III:	Basic St	atistics for	r field bio	logy						15

	 Concept of Sample and Population, Determining sample size Types of Data (Qualitative and quantitative and their subtypes) and its distributions: (Normal, Binomial, and Poisson) Graphical representation (Pie, bar, line, histograms, frequency polygons, Kite diagrams etc.) Measures of central tendencies and Measures of dispersion Type I and II errors 	
	(problems based on above methods)	
Unit IV:	Advanced Statistics for field biology	15
	 Null Hypothesis and Hypothesis testing Working on quantitative and qualitative data: Parametric Tests: Z, t, F, Non-Parametric Tests: Chi-Square, Correlation and Regression analysis and its applications. Concepts of Confidence interval and Power (problems based on above methods) 	

Course (24BPBW		Course Title Applications of Information Technology in Field Biology 04							No. of lectures 60					
Course O	utcome	es:							'					
At the end	of the	course stude	nts will be	able to:										
CO 1	Asses		nologies a	nd telemet	ry applica	ations for	wildlife monito	ring and L:	5					
CO 2	Interp	ret audio re	cording te	chniques a	nd their a	pplication	s in ecological	L	2/L					
	moni	itoring. 5												
CO 3		Utilize GIS and GPS technologies to develop field maps and analyzoiodiversity data.												
CO 4	Apply relate	y remote se d data					interpret biod		3					
Grading w			T				(40%), 0: No M	apping						
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6								
CO 1	3	3	2	2	2	3								
CO 2	3	2	2	2	2	3								
CO 3	3	3	3	3	2	3								
CO 4	3	3	3	3	2	3								
Unit I:	F	ield comput	ters and R	Radio-tele	metry	1	1		15					

Course Code 24BPBW3P01	PRACTICALS BASED ON 24BPBW3T01, 24BPBW3T02, 24BPBW3T03	o. of tures 60
Course Outco At the end of the	ne course third entry devices (including data loggers)	
	 Hand held & satellite based systems Limitations of telemetry observations Applications of telemetry eg. Habitat usage, migration studies "Digital" tagging & its applications (e.g. implanting microchips) 	
Unit II:	Audio records	15
	 Various audio recording techniques Sonogram and its evaluation Software for sonogram evaluation Applications of audio recordings e.g. (Bird songs, Insect calls, Habitat usage by Bats, Marine mammals) Managing data integrity & safety in field 	
Unit III:	GIS and its interpretation	15
	 GIS: Basic principles and significance Types of Geographical Data; Data Structure; Vector and Raster data: their Advantages and Disadvantages Satellite imagery, False color composition Applications of Geographic Information System Concept of database and metadata Importance of GIS in Biodiversity studies GPS and its application in field Preparation of field maps, vegetation map 	
Unit IV:	Remote Sensing	15
	 Principles, basic concepts and applications of Remote Sensing Software for Remote Sensing: Q-GIS, Arc GIS, SAGA, DIVA GIS, US GIS, BHUVAN Aerial photography - Basics and principles Case studies - Use of Remote sensing in Biodiversity studies 	

CO 1	Make use of basic microbiological and molecular techniques.	L3
CO 2	Interpret data from phylogenetics, population studies, and statistics.	L4
CO 3	Identify signs of wildlife using field-based evidence.	L3
CO 4	Utilize field and digital tools for ecological monitoring.	L3

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	2	2	1	3
CO 2	3	3	2	1	1	3
CO 3	3	2	1	3	2	3
CO 4	3	3	3	3	2	3

- 1. Aseptic transfer technique
 - inoculation and culturing of microorganisms
 - isolation techniques serial dilution and T streak, Quadrant
 - Gram staining
- 2. Extraction of chromosomal/plasmid DNA from bacteria.
- 3. Problems based phylogenetic maps and Cladograms. (Eg. Describe/Comment on evolutionary history/ patterns in the picture etc.)
- 4. Identification of a) Techniques of Trangenesis and b) Genetically Modified Organisms, using suitable photographs.
- 5. Demonstrate the capture recapture technique for enumeration of population size (e.g. rice weevil or beads/seeds using marker pen)
- 6. Study of Pugmarks: Make plaster cast of pugmark (e.g. of domestic cat or dog). From the plaster cast make measurements and record the same. Trace the pug mark using glass slab and make a record. Take measurements and keep a record. Study the applications of the same
 - If possible, repeat the experiment with Plaster cast of pug mark of Tiger / Leopard (take help from Wildlife authority to obtain plaster casts)
- 7. Study of animal Tracks & signs using photographs or drawings. e.g. pugmarks, foot prints, tracks,
 - claw marks, browse lines, regurgitates (e.g. owls), hair, burrows, dens, nests etc.
- 8. Study of excreta/faeces of various animal species using specimens (if feasible) photograph or images. It should include different kinds of excreta eg. Scat, Dropping, Pellet, Dung, spraint, Guano etc. (The concept and significance of coprology should be understood by studying various types of scats and their natural decay process.)
- 9. Problems based on statistical tools in theory. Statistics using MS-EXCEL
- 10. Identify and study applications of components of a typical field kit.
- 11. Identify and study specifications & applications of various telemetric devices (Photographs or Models or working models and diagrams);
 - a. Antennae, transmitters (ingestible, implantable, strap-on (attachable) type)
 - b. Digitized tags (e.g. implantable micro chips)
 - c. Dart Gun & Tranquilizing agents & their action.
- 12. Make an audio recording of a song bird. e.g., bulbul, magpie robin, sunbird. Observe and note the activity of the bird while recording the call. Make a sonogram of the recording. Analyze the call and correlate with the behavioral observations. Classify the call as advertisement call, territorial call, alarm call, courtship call etc.
- 13. Study of various input devices (construction, use and applications) using photographs /

- models / actual devises, that could be used with a field computer;
- 14. Types of input ports, Imaging devices, audio devices, Telemetric devices, Note pads & scribble pads, pressure devices, Remote control devices, external memory devices etc.
- 15. Using a hand held GPS instrument locate coordinates of a demarcated field site (Eg. college campus).
- 16. Describe the use of any of the following software platforms by performing basic operational/ statistical functions: Maxent/ PAT GEOM/ Rstudio. (Simulated datasets can be used. Basic programming in R should be attempted for simple statistical calculations.) Students should understand the basics of coding and syntax. The application of such platforms in ecosystem modeling should be understood. Simple programs and analysis carried out should be recorded as a report.
- **Any 10 practicals from the above list to be performed

SEMESTER III ELECTIVE I

Course 24BPBV			Monito		urse Title Assessing		redits 02	No. of lectures 30				
CO 1	Interpre	ourse stude t abiotic a ems.	nd biotic 1	parameter			health across dive					
CO 2	ecologic	cal assessm	nents.				nal and continuous sment types and l		L4 L6			
CO 4	biotic ar	nd abiotic j	parameters	S.			and applications			_		
Grading w	vill be as 3	environmental and carbon audits. be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No Mapping										
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6						
CO 1	3	3	2	3	2	3						
CO 2	3	2	2	3	1	2						
CO 3	3	3	3	3	2	3	1					
CO 4	3	3	3	3	2	3						
Unit I:	Monit	water Biotic pa Continuo	parameters rameters - ous & seas	to be mon	e species &	Indicato	types of habitats - or species	air,	soil,	15		
Unit II:	Envir	onmental	Audits &	reporting	g					15		
	•	Planning Audit par Environi practice	ment safet g audit fin	ental audi major biot y audits, (dings	ic and abid Carbon Au		rs ignificance, applic	catio	ons and			

Course 24BPBV		PRACTICALS BASED ON 24BPBW3T04							edits 02	
Course O			. 411.1	11 .				<u>'</u>		
At the end		ourse studenine physica			perties of s	oil samn	les	L5		
CO 2		te key wate		L5						
CO 3		audits to a		L6						
CO 4		Interpret environmental data for resource conservation insights.								
Grading v		3: High(>6	0%), 2: M	oderate(40	0%-60%),	1: Low(<	40%), 0: No Mapping	2		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6				
CO 1	3	3	2	3	2	3				
CO 2	3	3	2	3	2	3				
CO 3	3	3	3	3	2	3	_			
CO 4	3	3	3	3	2	3	-			
		 Test of W D B L S pl H T 	H exture otal organ Vater samp issolved C OD ight Penet alinity H ardness, otal Disso	ic content. bles for - Oxygen ration	s and Tota		ded Solids building/office			

SEMESTER III ELECTIVE II

Course C 24BPBW		Intellect		edits 94	No. of lectures 30					
Course O At the end CO 1 CO 2 CO 3	of the co Discuss in prom Identify Outline	the role, hoting economic key categorithe condit	istory, and omic and ories of IP ions, right	l governar cultural de R and thei	r protection	t. on framev	Property Rights (works in India. patent protection		L6 L3 L2	
CO 4 Grading w	infringement in India. O 4 Summarize the steps of the patenting process, application types, and the L2 concept and consequences of biopiracy. ading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No Mapping PO 1 PO 2 PO 3 PO 4 PO 5 PO 6									
CO 1	3	2	2	2	1	3	_			
CO 2	3	2	2	2	1	3	-			
CO 3	3	2	2	2	1	3	-			
CO 4	3	3	2	3	1	3	-			
Unit I:	Introd	Tangible	& intangil	ole propert	ties					15
	 Introduction to Intellectual Property Rights Tangible & intangible properties Definition of IP and IPR, Role of IP in the Economic and Cultural Development of the Society, IP Governance, IP as a Global Indicator of Innovation, Origin of IP, History of IP in India Categories of Intellectual Property: Copyrights and Related Rights -Classes of Copyrights, Criteria for Copyright, Ownership of Copyright, Copyright Infringement is a Criminal Offense, Validity of Copyright Trademarks - Eligibility Criteria, Designation of Trademark Symbols, Classification of Trademark, Acts and Laws, Validity of Trademark Geographical Indications- Acts, Laws and Rules Pertaining to GI, Rights Granted to the Holders, GI Ecosystem in India Trade Secrets- Criteria for Trade Secret, Rights Associated with Trade Secrets, Important Information about Trade Secrets Plant Varieties- Need for Native Plant Protection as an IP, Indian Context for Protection of Plant Varieties, Duration of Plant Variety Protection in India Industrial Designs- Eligibility Criteria, Acts and Laws to Govern Industrial Designs, Design Rights, Duration of the Registration of a Design 									
Unit II:	Paten	ting								15

- Introduction to patent, Conditions for Obtaining a Patent Protection, To Patent or Not to Patent an Invention,
- Rights Associated with Patents, Enforcement of Patent Rights, Inventions Eligible for Patenting, Non-Patentable Matters, Patent Infringements, Avoid Public Disclosure of an Invention before Patenting
- Process of Patenting:
 - Prior Art Search, Choice of Application to be Filed
 - Patent Application Forms, Jurisdiction of Filing Patent Application, Publication, Pre-grant Opposition, Examination, Grant of a Patent, Validity of Patent Protection,
 - Post-grant Opposition Commercialization of a Patent, Patent Related Forms,
- Types of Patent Applications, National Bodies Dealing with Patent Affairs, Utility Models
- Biopiracy concept, impacts (eg: Neem, Basmati etc)

Course Code 24BPBW3P03	PRACTICALS BASED ON 24BPBW3T05	Credits 02
---------------------------	--------------------------------	------------

Course Outcomes:

At the end of the course students will be able to:

CO 1	Compile and draft basic patent application forms and specifications following procedural guidelines.	L6
CO 2	Interpret real-life examples of copyright, trademark, GI, patent, and trade secret through case studies.	L5
CO 3	Summarize the significance of Intellectual Property Rights through expert interactions and events.	L2
CO 4	Distinguish various forms of IPR based on legal features and real-world applications.	L4

Grading will be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No Mapping

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	2	2	2	3
CO 2	3	2	2	2	2	3
CO 3	3	2	2	2	3	3
CO 4	3	2	2	2	1	3

1. Filling a Patent: Form-1 (application for the grant of a patent).

Form-2 (provisional/complete specifications).

- 2. Case study and examples on copyright
- 3. Case study and examples on trademark
- 4. Case study and examples on Geographical Indicators
- 5. Case study and examples on trade secret
- 6. Case study and examples on patent
- 7. Attending a workshop/seminar/Conference/Guest lecture on IPR.

	Course (RESEA	ARCH PF		esteru Dator		versity, Wild	llife			edits 04	No. of Hours:
	Course Cod BPBW4T		Course Title Important Acts, Regulations and Organizations Cred 04							its	lect	o. of cures	
Co	Atsthound	onfithe co	urse, stude	ents will be	e able to:				•				
At	the Qnd of	tHecourk	et studlerran	witeboard	le question	s and hy	otheses	for a selecte	ed fie	eld	L6		
	O 1 In	terpoblem	lobal conv	entions c	on biodive	ersity con	servation	and sustain	able	L			
	CO 2 re				logies and	sampling	technique	es for data			L6		
			on in the fi										·
	CO 3	Analyze	the collec	ted field d	lata using s	suitable st	atistical to	ools.			L4		
	CO 4	Discuss presenta		earch fin	dings ef	fectively	through	reports ar	ıd oı	ral	L6		
	Grading w	ill be as 3	3: High(>6	0%), 2: M	oderate(40	0%-60%),	1: Low(<	40%), 0: No	Map	ping	<u> </u>		
		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6						
	CO 1	3	3	2	1	2	3						
	CO 2	3	3	2	2	3	3						
	CO 3	3	3	3	2	2	3						
	CO 4	3	3	3	2	3	3						

General Guidelines

- 1. The RP topic may be undertaken from any topic relevant to biodiversity, ecology, conservation and allied subject with precise objective
- 2. Each student has to undertake a RP individually based on field and/or laboratory work
- 3. Students must remain present at the time of review meeting scheduled by research guides
- 4. Structure of report should contain the following chapters: Title, Abstract, Aim, Objective and Rationale, Introduction, Literature review, Methodology, Study Area, Observations, Result, Conclusion, Discussion, Bibliography
- 5. Student should prepare a powerpoint presentation of research project and it should be presented in front of respective examiner
- 6. Duly signed hard copy of report and PPT should be submitted to the Department/college

CO 2	Outline	L2							
CO 3	Explain		nd policies	_	g protecte	d areas a	nd their implications	L2	
CO 4	Summar		neasures,	internatio		entions, a	and institutions that	L2	
Grading v						1: Low(<	<40%), 0: No Mappin	ıg	J
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6		J	
CO 1	3	2	2	3	2	2	-		
CO 2	3	2	2	3	2	2			
CO 3	3	2	2	3	2	2			
CO 4	3	2	2	3	2	2			
Unit I:	Conventions on Conservation								
	 Convention on Biodiversity (CBD) Cartagena Protocol on Biosafety World Heritage Convention Ramsar Convention on Wetlands Bonn Convention International Tropical Timber Agreement Convention on Desertification 								
Unit II:	Regula	tions & A	cts related	d to forest	ts				15
	 Wildlife Protection act, 1972 Role of National Board of Wildlife (NBWL) Biodiversity Act, 2002 Role of National Biodiversity Authority (NBA), State Biodiversity Board (SBB), Biodiversity Management Committee (BMC) Forest conservation Act, 1980 Indian Forest Act, 1927 Forest Rights Act 								
Unit III:	Regulations & Acts related to protected areas								
	 Tribal Rights Act, 2006 Coastal Regulatory Zone notification, 1991 Wetland Rules Fisheries Act, 1897 Prevention of Cruelty to Animals Act, 1960 National Afforestation Programme (NAP) 								

	Integrated Development of Wildlife Habitats (IDWH)	
Unit IV:	Wildlife trade and related organizations	15
	Measures to control poaching & wildlife trade	
	• CITES	
	RED Data Book	
	Wildlife Crime Control Bureau	
	International Consortium on Combating Wildlife Crime (ICCWC)	

	e Code W4T02		Huma	(n Wildlif	Course Ti e Conflict		tigation	Credits 04	No. of lectures 60	
Course O		. 1	. 911.1	11 .						
CO 1			ildlife co		ugh its his	torical, e	cological, and socio-	L4		
CO 2				acts and po	olicy inter	ventions i	n human-wildlife	L5		
CO 3	use.						nd alternative energy			
CO 4	awarenes	plore eco-tourism planning, community involvement, and environmental L5 areness. e as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No Mapping								
Grading v				· · · · · · · · · · · · · · · · · · ·		1: Low(< PO 6	<40%), 0: No Mappir	ng		
60.1	PO 1	PO 2	PO 3	PO 4	PO 5					
CO 1	3 3	2 2	1	3	2 2	3				
CO 3	3	2	1	3	2	3				
CO 4	3	2	1	3	3	3				
Unit I:	Cau	Introdu Histori Conflie Habita Compe	action to I ical and C ct or Coex t loss and etition for aiding and n encroach	ultural asp	ildlife Con pects ation (eg; food, k predatio	water, sp	finition, Scope and S pace)	Significance	15	
Unit II:	Hun	nan-wildl	ife confli	ct impacts	s, manage	ment and	l policy		15	
 Economic consequences for local communities, farmers, and wildlife conservation efforts Threats to human livelihoods and food security Conservation implications and effects on wildlife populations Human injuries and fatalities resulting from conflicts with wildlife Legal frameworks and policy interventions to address human-wildlife conflict Institutional arrangements and governance structures Role of NGOs, government agencies, and community-based organizations in conflict management Participatory approaches and conflict resolution mechanisms 										

Course Co		No. of lectures 60
	 Sustainability of Natural resources Natural Resource Management (with special reference to Fisheries & Fores Regulations on fishing Estimating sustainability of fish populations Concept of MSY in marine resources Regulating forest usage & Minor Forest Produce: Controlled logging and N Timber Forest Produce (e.g. grazing at Keoladeo / Gir, Fishing in Sunderba Mahua collection in Kanha, Tendu (<i>Diospyros melanoxylon</i>) leaves collection Central Indian protected areas etc.) in and around various sanctuaries and national parks in India. Alternate energy sources, their applications and practice 	Non ans, ion
Unit IV:	Eco-tourism	15
	 Scope of Eco tourism in India Hospitality & Logistics in Eco-tourism Planning and executing Eco-tourism Customized Eco-tours (e.g. Bird watching, Adventure Tourism, Agro-tourism Local community's participation in Ecotourism Public awareness & Interpretation towards environment Orienting Corporate Social Responsibility towards environment 	sm)

Course O	utcomes:									
At the end	l of the cou	ırse studeı	nts will be	able to:						
CO 1			, role, and e law enfor				wildlife forensics in	L2		
CO 2	Discuss 1	DNA anal		y protocol			andling and transport	L2		
CO 3	Outline t	he method	ds and app		of forension	identific	cation in ornithology,	L2		
CO 4		gy, and bo		national a	nd intern	ational a	agencies in wildlife	L2		
	forensics	5.								
Grading v	vill be as 3 PO 1	: High(>6 PO 2	0%), 2: M PO 3	oderate(40 PO 4	0%-60%), PO 5	1: Low(- PO 6	<40%), 0: No Mapping	g		
CO 1	3	2	1	3	2	3	_			
CO 2	3	3	2	3	2	3				
CO 3	3	3	2	3	2	3				
CO 4	3	2	1	3	3	3	-			
Unit I:	Introd	Introduction to Wildlife Forensics • General introduction, concept & scope								
	 General introduction, concept & scope Role of forensics within wildlife law enforcement Techniques used in wildlife forensics - introduction Applications of wildlife forensics- Casework, Traceability, Intelligence 									
Unit II:	Foren	sics in wi	ldlife crin	ie investi	gation				15	
	•	identification Health and Collection chemical	ation, fami	ilial identi neasures rvation of ion	fication, i	dentification dentification de la constant de la co	, species identification tion of geographical lo - taxidermy, cryopres shipment	ocations		
Unit III:	Foren	sic Ornitl	hology, Pa	alynology	and Bota	ny			15	
	•	artifacts Role of p pollen ar	of ivory, s palynomor nd spores,	hells, scal phs in for diatoms	es ensic inve	stigation	nalysis of artifacts, car - NPC analysis, analy study - trafficking of	sis of		
Unit IV:	Foren	sic Agenc	ies and O	rganizati	ons				15	

- The Society for Wildlife Forensic Science (SWFS), Wildlife Forensic Academy
- Organizations involved in supporting development of wildlife forensics The Society for Wildlife Forensic Science, TRAFFIC etc.
- Institute of Forensic Sciences, Fort, Mumbai

SEMESTER IV ELECTIVE I

Course 24BPBV		Eco Journalism and Eco Literacy 02						lectures 60	
Course C		ourse stude	nts will he	able to					,
CO 1		environme			ental agenc	cies, and the	he role of RTI in eco	L4	
CO 2	Justify e	ngaging wit nental repor		communiti	es and utili	zing mass	media for	L5	
CO 3				rget audier	nce for env	ironmenta	l education	L3	
CO 4	activities	s, and issue-	based awar	eness prog	rams.		room methods, field		
Grading v		be as 3: High(>60%), 2: Moderate(40%-60%), 1: Low(<40%), 0: No Mapping							
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	2	1	3	2	3			
CO 2	3	2	2	3	3	3			
CO 3	3	2	1	3	2	3			
CO 4	3	2	2	3	3	3			
Unit I:	Envi	Environmental Journalism							
	•	Importar RTI and Interacti Mass me e.g book films – I	ating envir nt Governi its judiciong with affedia and its s – Silent Home (BB ng Environ	mental age ous use fected pec s role spring, Sn C docume	encies ople nall is bea entary), An		enient truth, Beautifu	ıl people	
Unit II:	Envi	ronmental	Educatio	n Techni	ques				15
	•	Identifyi Children Techniq Class-ro Competi Field tec For e.g. exhibition	tions, song chniques Surveys, S ons etc. ment educ	nce & thei public, De ironmenta ques (exar gs, drama, street play ation on s	r needs ecision ma l educatio nples) - T mass-me s, demons pecific iss	nkers on alks, Nat dia etc. strations,	ure games, role play: Art Cultural practice mples); as plant, cattle immu:	es,	

Course 24BPBV		I NACIICALS DASED ON 24DI DW 4104							
Course O				1.1					
	1	urse stude			theoryale fir	ald an wray	a and statistical to als	L5	
CO 1							s and statistical tools.		
CO 2							cation tools.	L6	
CO 3	Design e	ducational	eco-resourc	es like nati	ure trails ar	nd tour pla	ns.	L6	
CO 4	Review	documentar	ries and inte	erview expe	erts to unde	rstand cor	nservation practices.	L5	
Grading w	vill be as 3	3: High(>6	0%), 2: M	oderate(40	0%-60%),	1: Low(<	40%), 0: No Mapping		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6			
CO 1	3	3	2	3	2	3	-		
CO 2	3	2	3	3	3	3			
CO 3	3	2	2	3	3	3	_		
CO 4	3	2	2	3	3	3			
	(* Re	resource to record to docum to sugge program and eval survey. I port to be	base, I their patt nent the ar st amelior mes. Appl uating bot Interpret the	ern of usage thropoger ative measty suitable h quantitate restrictions at the time.	ge of the raic influences inclustrations of the statistical tive and quality of the statistical transfer of the st	natural resces on the ding environs for ualitative partion for	e ecosystem and ironment awareness tabulating, representidate obtained during tabulati*.	the ner).	
	4.	& general biodiver conflict, etc.) ** 5 presenta Design a report Prepare History nights, e Wildlife	al public o sity sites land Developm Students cations. a self-guide a plan, itim / Adventur xcluding t Documen	on some entike mangrenental activant use operated trail for the tourism ravel)	vironmentove or sea vity that hen source so a nature of rochure for / Agro tou	tal issues shore or as potent software t reserve / l or an eco- arism (ma	ricate conservation to (Eg. Destruction of lo a forest patch, Human ial threat to local biodico create audio visual biodiversity park and stour for place of Natural aximum three days & tour activist/government of	cal allowing the control of the cont	

Course C 24BPBW		В	Biodiversi	Course ty and Ar	e Title tificial In	telligence	e	Credits 02		No. of lectures 60
Course O			, '11 1	11 4				!	'	
CO 1		ourse studern the concept			AI and mad	chine learn	ning in biodiv	ersity studies.	L2	
CO 2	Discus	s AI-driven b	oiodiversity	monitorin	g, including	g data type	es and automa	ated species	L2	
	identif	ication syster	ns.					•		
CO 3	I	Outline the role of AI in the policy-making process for biodiversity conservation, ncluding identification, formulation, adoption, implementation, and evaluation. Examine case studies on the application of AI in conservation practices such as								
CO 4	Exami sustair	ne case stud able fishing,	dies on the	ne applicates	tion of Al	in cons Ilution red	ervation praduction.	ctices such as	L4	
Grading v							<40%), 0: No	o Mapping		
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	-			
CO 1	3	2	3	2	2	3	-			
CO 2	3	3	3	3	2	3				
CO 3	3	2	3	3	3	3				
CO 4	3	3	3	3	3	3				
	• I S	supervised, AI for Biodi Data types us Stationary se	versity sed in AI o ensors pecies ide	driven bio	diversity r	monitorin	nsupervised, g - Mobile s System of So	ensors,		
Unit II:	Using A	I to conserv	ve biodive	ersity						15
	•	Identificate Formulation Adoption, Implement Evaluation asses studies AI for sust AI for cora Using AI to	ion on, ation, ainable fis	shing, oration,	n in Ugan	da				
Course (24BPBW		<u> </u>					BPBW4T05			Credits 02

Cou At t	Cou 23B	urse (PBW4	4RP3	3 RESI	THE RESEARCH PROJECT - IT based on Biodiversity, Wildlife T					edits 06	No. of Hours: 180			
					ots and en									
CQ	A t th				oodeitering	<u> </u>								_
	CO	1 wil	d ∏if æ	mapatatie	hevand stud	laranimak	mioyeman	ds hypoub	bs@gs	fotudice.	ected f	field	L6	
C					nodels usi							nges	L6]
	CO	2 on	biodi	igersappao	dricaesysetd	mstodogie	natratisagn	painiguse A	Intgal	s for dat	a		L6	∐ ∥
Gra	ding v	vill be	asoBl	eltigh(in6t	M 6fieldMo	oderate(40)%-60%),	1: Low(<	40%), 0: No N	Mapping	g		
	CO	3 PO	Ana	ıly ₽⊙tB e c	ol lec eed fi	eldPotata u	sin g Quital	ole Ps0a6i st	cal to	ools.			L4	
q	O CO	4 3	Dis	cuss2 the	resæarch	findings	efZectiv	ely 3 thro	ugh	reports	and	oral	L6	-
C	O 2	3		3	3	3	2	3						
С	О 3	3		3	3	3	2	3						
С	O 4	3		3	3	3	2	3						
			•		eies divers	•				•	ntify			

- different bird species based on their characteristics using AI algorithms Merlin
- 2) Species identification: Utilize AI tools for species identification, such as image recognition software, to help learn about different species and their characteristics iNaturalist, eBird
- 3) Develop conservation plans for protecting biodiversity hotspots or endangered species using AI - Normalised Difference Vegetation Index (NDVI)
- 4) Using AI for monitoring and surveillance of wildlife populations, such as using drones and AI algorithms to track animal movements - Deep learning (case study)
- 5) Create simulation models using AI to study the impact of environmental changes on biodiversity and ecosystems (case study)
- **demonstration of various AI tools along with identification and case study for above practicals

	presentations.		
--	----------------	--	--

Grading will be as	s 3: High	(>60%), 2	2: Moderate	40%-60%).	1: Low((<40%), (): No Mapping
Clading Will Co as	J J . III 511	(OO, O,, -	1110 0001 0000	10,000,000	1. 20 ,, (,, , , o , , , abbine

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6
CO 1	3	3	2	1	2	3
CO 2	3	3	2	2	3	3
CO 3	3	3	3	2	2	3
CO 4	3	3	3	2	3	3

General Guidelines

- The RP topic may be undertaken from any topic relevant to biodiversity, ecology, conservation and allied subjects with precise objective
- Each student has to undertake a RP individually based on field and/or laboratory work
- Students must remain present at the time of review meeting scheduled by research guides
- Structure of dissertaion report should contain the following chapters: Title, Abstract, Aim, Objective and Rationale, Introduction, Literature review, Methodology, Study Area, Observations, Result, Conclusion, Discussion, Bibliography
- Student should prepare a powerpoint presentation of research project and it should be presented in front of respective examiner
- Duly signed hard copy of dissertaion and PPT should be submitted to the Department/college

SUGGESTED READINGS

Sr.	Title	Author	Publisher	Year
No.	Protected Area		Kalpavriksh Environment	Periodical
1.	Update; Newsletter		Action Group, Pune , India	remoureur
2.	Zoos in India; Legislation, Policy, Guidelines and Strategy		Central Zoo Authority, New Delhi	2007
3.	Wildlife ecology	Aaron, N.M.	W.H. Freeman Co. San Francisco, U.S.A.	1973
4.	The Book of Indian Birds	Ali, Salim	Oxford University Press, Mumbai	1997
5.	Wildlife Ecology, Conservation and Management	Anthony R.E. Sinclair, John M. Fryxell and Graeme Caughly	Blackwell Publishing, U.S.A.	2006
6.	The Book of Indian Shells.	Apte, Deepak.	Oxford University Press, Mumbai.	
7.	Indian Wildlife Yearbook	Arora B. M., Editor	AIZ & WV, Bareilly and Central Zoo Authority, New Delhi	2002
8.	Rehabilitation in free living wild animals	Arora, B.M.	AIZ & WV, Bareilly	2007
9.	Reproduction in Wild Mammalia & Conservation	Arora, B.M.	AIZ & WV, Bareilly.	2002
10.	People and wildlife, conflict or co-existence?	Woodroffe, R., Thirgood, S., & Rabinowitz, A.	5th Edition. Cambridge University Press	2005
11.	Remote Sensing for Hazard Monitoring and Disaster Assessment	Barett, E.C. and Anton Micallef	Taylor and Francis, London	1991
12.	Statistics in Research	Bernard Ostle and R.W.Mensing		
13.	Wild Animals in Central India	Brander, A.A	Natraj Publisher, Dehradun.	
14.	Method of Statistical Analysis	C.H. Goulden	John Wiley & Sons	
15.	Environmental Impact Assessment	Canter, L. W.	Graw, Mc, , Hill Publication, New York.	
16.	Introduction to Geographic Information Systems,	Chang – Kang, Tsung	Tata McGraw -Hill Publishing Company Limited, New Delhi	2002
17.	A guide to Chemical Restraint of Wild Animals.	Chowdhury, Sushant and Malik, Pradeep	Natraj Publishers, Dehradun.	
18.	EIA – A Biography	Clark, B. D., Bissel, B. D. and Watheam, P.	School of Forestry and Environment, SHIATS- Deemed University, Allahabad	
19.	The Temple Tiger.	Corbett, Jim	Oxford University Press, New Delhi	2007

Sr. No.	Title	Author	Publisher	Year
20.	Asian Elephant,	Daniel, J.C.	Natraj Publishers, Dehradun	
21.	The Book of Indian Reptiles and Amphibians	Daniel, J.C.	Oxford University Press, Mumbai.	
22.	Resource and Environmental Economics	Fisher, A.C.	New York: John Wiley & Sons	1979
23.	The conservation of plant biodiversity.	Frankal, Otto H., Anthony, A., Brown, D. and Burdon, Jeremy J.	Cambridge University Press	1995
24.	Statistical Methods	G.W. Snedecor and W.G. Cochran		
25.	The Serengeti Lion	George B. Schaller		
26.	Fundamentals of Wildlife Management	Gopal, Rajesh	Justice Home, Allahabad, India.	1992
27.	Encyclopedia of mammals	Grzimek	McGraw Hill Publishing House, New Delhi.	1988
28.	Wild Animals, Their Minds and Manners	Hornaday, W.T.	IBD, Dehradun.	1989
29.	Concepts in Wildlife Management	Hosetti, B.B.	Daya Publishing House, Delhi.	1997
30.	Collection and preservation of animals	Jairajpuri M. S.	Zoological Survey of India	1990
31.	Statistical Ecology	John A. Ludwig & James F. Reynolds	John Wiley & Sons	1988
32.	Handbook of Environment, Forest and Wildlife Protection Laws in India	Justice Kuldip Singh	Natraj Publishers, Dehradun	1998
33.	Biodiversity conservation in managed and protected areas	Katwal/Banerjee	Agrobios, India	2002
34.	Advances in Fish and Wildlife Ecology and Biology	Kaul, B.L.		1999
35.	A Vet in Wilderness	Khan Ali M. G.	Central Zoo Authority, New Delhi	
36.	Remote Sensing and Image Interpretation	Lillesand, T.M. and Kieffer, R.W	John Wiley and Sons	
37.	Wild Animals of India, Burma, Malaya and Tibet	Lydekker, R.,	Natraj Publishers, Dehradun.	

Sr. No.	Title	Author	Publisher	Year	
38.	Wildlife Crime	Menon, Vivek and Kumar, Ashok	Natraj Publisher, Dehradun.	1999	
39.	Wildlife Issues in a Changing World			1997	
40.	A handbook of forestry.	dbook of forestry. Negi, S.S. International Book Distributor, Dehradun.		2005	
41.	Biodiversity and its conservation in India	Negi, S.S.	Indus Publishing Co., New Delhi.	1993	
42.	Manual for Wildlife Management in India	Negi, S.S.			
43.	Fundamentals of Ecology	Odum, Eugene P	Natraj Publishers, Dehradun.		
44.	Applied Anatomy of Domestic Animals.	Ommer, P.A. and Harshan, K.R.	Jaypee Brothers Medical Publishers (P) Ltd., New Delhi.		
45.	Natural Resource Information for Economic Development	Orris C. Herfindahl	Baltimore: The Johns Hopkins University Press	1969	
46.	Watching and Conserving	Oxford Anthology of Indian Wildlife	Oxford University Press, New Delhi.		
47.	Aerial Photography and Image Interpretation for Resource Management.	Paine, D.P.	John Wiley and Sons.		
48.	The Ecology of Wildlife Diseases.	Peter J. Hudson, Annapaola Rizzoli, Bryan T. Grenfell, Hans Heestrbeek and Andy P. Dobson	Oxford University Press, Oxford	2002	
49.	Book of Indian Animals.	Prater, S.H.	Bombay Natural History Society, Mumbai.		
50.	Essentials of Conservation Biology	Primack, R.B.	Sinauer Associates, Inc. Sunderland, MA	1998	
51.	Principles and Procedures of Statistics (with special reference to Biological Sciences)	R.G. Steel and J.H. Torrie			
52.	A TextBook of Agricultural Statistics	R.Rangaswamy			
53.	Birds of Wetlands and Grasslands	Rahmani, Asad R. & Ugra, Gayatri	Bombay Natural History Society, Mumbai.		
54.	A Handbook of the Management of Animals in Captivity.	Ram Brahma Sanyal		1995	

Sr. No.	Title	Author	Publisher	Year
55.	Wildlife management.	Robert, G.H.	W.H. Freeman and Co., San Francisco, U.S.A.	1978
56.	The Care and Feeding of Infant Orphaned Wild Birds.	S.M.L. Grose.	IBD, Dehradun	
57.	Remote Sensing: Principles and Applications	Sabbins, F.E., Freeman		
58.	Manual of wildlife techniques for India.	Sale, J.B. and Bergmuller, K.	WII, FAO, DehraDun, India	1988
59.	A Handbook of the Management of Animals in Captivity.	Sanyal, Ram Brahma		1995
60.	Indian Wildlife Resources Ecology and Development	Sharma, B.D	Daya Publishing House, Delhi	1999
61.	A New Approach to Linear Programming	Sharma, S.D.	Kedarnath, Ramnath and Co. Meerut	1975
62.	Wildlife Ecology, Conservation and Management	Sinclair, Anthony R.E., Fryxell, John M. and Caughey, Graeme	Blackwell Publishing, U.S.A.	2006
63.	Economics of PA's and its effect on biodiversity.	Singh and Vijaykumar.	APH Publishing Corporation, New Delhi.	2001
64.	Text Book of Wildlife Management.	Singh, S.K.	IBDC, Lucknow.	2005
65.	Conserving India's Natural Heritage	Singh, Samar	Natraj Publication, DehraDun.	1987
66.	Wildlife and Forest Conservation	Sinha, P.C.	Anmol Publishing Pvt. Ltd., New Delhi.	1998
67.	Mammals Skin.	Sokolov, V.E.	IBD, Dehradun.	1982
68.	Wildlife research and management. Asian and American Approaches	Stephen, H.B. and V.B. Saharia	Oxford University Press, Delhi	1995
69.	Zoogeography of India and Asia.	Tiwari, S.K.	CBS Publisher and Distributors, New Delhi.	
70.	Natural Resource and Environmental Economics	Tony Prato,	Iowa State University Press	1998

Sr. No.	Title	Author	Publisher	Year
71.	Environmental and social impact assessment	Vanclay F. and Bronstein, D.A.	John Wiley & Sons, New York.	1995
72.	Guide for Planning Wildlife Management in Protected Areas and Managed Landscapes	Vishwas Sawarkar	Natraj Publisher. Dehradun	
73.	Experimental Designs	W.G. Cochran and G.M.Cox		
74.	Apala Paryavaran	Paryavaran Dakshata Mandal		
75.	Intellectual Property Rights	Jyoti Raman	Bharat Law House	2024
76.	Intellectual Property Rights Manual	Saurabh Bindal	1st Edition, Eastern Book Company	2023
77.	Trade Marks Act, 1999 Bare Act		19th Edition, Eastern Book Company	2024
78.	Bioacoustics and Artificial Intelligence for Biodiversity Conservation	Garima Singh, Sachin Kumar		2023
79.	Proposing Central Asian AI Ethics Principles: A Multilevel Approach for Responsible AI	Ammar Younas Yi Zeng		2024
80.	Artificial intelligence and conservation.	Fang, F., Tambe, M., Dilkina, B., & Plumptre, A. J.	Cambridge University Press.	2019
81.	Wildlife forensics: methods and applications.	Jane Huffman John Wallace	John Wiley & Sons.	2012
82.	Forensic science in wildlife investigations.	Adrian Linacre	CRC press	2009
83.	Wildlife DNA Analysis: Applications in Forensic Science	Adrian Linacre Shanan Tobe	Wiley	2013
84.	Human–wildlife interactions: turning conflict into coexistence	Beatrice Frank, Jenny Glikman. Silvio Marchini	Cambridge University Press.	2019

Evaluation Scheme 60:40 (Subjected to change to 50:50 as per new guidelines of NEP) Internals Based on Unit 1 / Unit 2 / Unit 3 / Unit 4

Assignments/ Tutorials/ Class test	Seminar or other activities	Ppt/video Presentation or other activities	Group discussion / book review or other activities	Active Participation & Leadership qualities	Tota l
10	10	10	05	05	40

Theory Examinations: For Paper 1, Paper 2, Paper 3 and Research Methodology Suggested Format for MAJOR Question paper

	23BPBW_T0_/0_/20						
Duration: 02 hr. 30 min				Total Marks: 60			
N.B.							
1.	All c	uesti	ons are compulsory				
2.			t labeled diagram wherever necessary				
3.			ons carry equal marks				
Q.1.	(A)		Attempt any one	8			
		(I)	Based on Unit 1				
		(II)	Based on Unit 1				
Q.1.	(B)		Attempt any one	7			
		(I)	Based on Unit 1				
		(II)	Based on Unit 1				
Q.2.	(A)		Attempt any one	8			
		(I)	Based on Unit 2				
		(II)	Based on Unit 2				
Q.2.	(B)		Attempt any one	7			
Q.2.	(D)	(I)	Based on Unit 2				
		(II)	Based on Unit 2				
		(11)	Duscu on Cint 2				
Q.3.	(A)		Attempt any one	8			
		(I)	Based on Unit 3				
		(II)	Based on Unit 3				
Q.3.	(B)		Attempt any one	7			

		(I)	Based on Unit 3	
		(II)	Based on Unit 3	
Q.4.	(A)		Attempt any one	8
		(I)	Based on Unit 4	
		(II)	Based on Unit 4	
Q.4.	(B)		Attempt any one	7
		(I)	Based on Unit 4	
		(II)	Based on Unit 4	
	·	·		

Theory Examinations: For ELECTIVE Paper

			23BPBW_T0_/0_/20		
Duration: 01 hr. 30 min				Total Marks: 30	
N.B.					
	l anes	tions	are compulsory		
			beled diagram wherever necessary		
			carry equal marks		
Q.1.	(A)		Attempt any one	8	
		(I)	Based on Unit 1		
		(II)	Based on Unit 1		
Q.1.	(B)		Attempt any one	7	
		(I)	Based on Unit 1		
		(II)	Based on Unit 1		
Q.2.	(A)		Attempt any one	8	
Q.2.	(11)	(I)	Based on Unit 2		
		(II)	Based on Unit 2		
Q.2.	(B)		Attempt any one	7	
		(I)	Based on Unit 2		
		(II)	Based on Unit 2		

Semester End Practical Examination:

Practical examination of each paper for 50 marks will be held for three and half hours

Semester _	Practical Examination "Month & Year
	Paper Code:

Total Duration: - 03.½ hrs. **Total Marks:** - 50

Distribution of marks

Question 1 - (performance & result/identification) – 20 marks

Question 2 - (performance & result/identification) – 10 marks

Question 3 - (identification) – 10 marks

Question 4 - (viva voce) – 05 marks

Question 5 - (journal/field report) – 05 marks

Marks Distribution and Passing Criterion for Each Semester

Theory						TD.	Dunatical	
	Theory	ľ	Practical					
Course Code SEM III / SEM IV	Internal	Min marks for passing	Theory Examination	Min marks for passing	Total	Course Code	Practical Examination	Min marks for passing
24BPBW3T01/4 T01	40	16	60	24	100	-	-	-
24BPBW3T02/4 T02	40	16	60	24	100	-	-	-
24BPBW3T03/4 T03	40	16	60	24	100	-	-	-
Laboratory 1	-	-	-	_	-	24BPBW3P01	50	20
24BPBW3T04 or 3T05/4T04 or 4T05	20	08	30	12	50			
Laboratory 2	-	-	-	_	-	24BPBW3P02 or 3P03/4P01 or 4P02	50	20
						24BPBW3P03 (Research Project - 4 credits)	100	40
						24BPBW4P03 (Research Project - 6 credits)	150	60

[#] Pedagogy for student engagement is predominantly lectures. However, other pedagogies enhancing better student engagement to be recommended for each course. The list includes active learning/ course projects/ problem or project-based learning/case studies/self-study like seminar, term paper or MOOC
