

Academic Council Meeting No. and Date: 8 / September 04, 2023

Agenda Number: 2 Resolution Number: 34, 35 / 2.7, 2.28

**Vidya Prasarak Mandal's
B. N. Bandodkar College of
Science (Autonomous), Thane**

Syllabus for
Programme Code: BUBC
Programme: Bachelor of Science
Specific Programme: Biochemistry
[F. Y. B. Sc. (Biochemistry)]

Level 4.5

Choice Based Grading System

Revised under NEP

From academic year 2023-2024

Preamble

Biochemistry is a perfect amalgamation of chemical sciences and biological sciences. A biochemist has a knowledge of reactions that drive the core of life processes. As a first step towards the journey of becoming a renowned biochemist, students enrolling for this course will be thrilled by the wonders of chemical reactions that various biomolecules carry out. With a little brush-up to the knowledge obtained in earlier levels of education, the student enrolling in this program would find himself learning exciting concepts of cell biology in first semester and Physiology in second semester.

Under the New Education Policy 2020, the syllabus has been modified to include deeper concepts of topics already present in the syllabus. The learner would follow a student-centric ‘Credit System’, which will allow continuous assessment and holistic evaluation of the candidate through internal and external modes. With this thoughtfully designed syllabus, it is expected that the learner would have a very strong conceptual base to be used for upcoming years of graduation and would develop a habit of asking questions encouraging his or her curiosity.

Learners will also be required to gain a knowledge of fundamental chemistry as a part of the minor subject. Theoretical microbiology will be dealt with by the students under the Generic elective while the hands-on techniques will be covered under the Vocational education. Students should also be able to speak fluently in the language known as ‘window to the world’. Thus, English communication will be covered stressing more on oral and written English in the first semester and scientific writing in second.

With a view of providing holistic education, learners will also be taught Yog, Ayurved, Meditation, Traditional Indian Diet and Stress management as a part of the Indian Knowledge System.

BOS Chairman: Ms. Sayali Daptardar

PROGRAMME OUTCOMES (POs) OF BACHELOR OF SCIENCE (B. Sc.)

The Undergraduate Programmes of Science are intended to cater quality education and attain holistic development of learners through the following programme outcomes:

PO1 - Disciplinary Knowledge

Lay a strong foundation of conceptual learning in science. Instil ability to apply science in professional, social and personal life.

PO2 - Inculcation of Research Aptitude

Ignite spirit of inquiry, critical thinking, analytical skills and problem-solving approach which will help learners to grasp concepts related to research methodology and execute budding research ideas.

PO3 - Digital Literacy

Enhance ability to access, select and use a variety of relevant information e-resources for curricular, co-curricular and extracurricular learning processes.

PO4 - Sensitization towards Environment

Build a cohesive bond with nature by respecting natural resources, encouraging eco-friendly practices and creating awareness about sustainable development.

PO5 - Individuality and Teamwork

Encourage learners to work independently or in collaboration for achieving effective results through practical experiments, project work and research activities.

PO6 - Social and Ethical Awareness

Foster ethical principles which will help in developing rational thinking and becoming socially aware citizens. Build an attitude of unbiased, truthful actions and avoid unethical behaviour in all aspects of life.

Eligibility: Passed 12th standard (HSC) of Maharashtra State Board / CBSE / ICSE board

Degree Program: B.Sc.

Duration: 1 Year (includes SEM I and SEM II)

Mode of Conduct: Offline Laboratory Practicals / Offline lectures / Online lectures

Total Credits for the Program: 132

Specific Programme: F. Y. B. Sc. Biochemistry (Major)

Credits: 06

Discipline/Subject: Biochemistry

Program Specific Outcomes

By the end of the program, the students will be able to:

PSO1	Explain the structure, properties, and functions of biomolecules and describe fundamental biochemical pathways and their regulation.	L1
PSO2	Relate biochemical concepts to allied fields such as molecular biology, biotechnology, microbiology, and clinical biochemistry, and apply knowledge to real-world applications such as diagnostics, industry, and environmental science.	L2
PSO3	Analyse biochemical data, interpret experimental results, troubleshoot laboratory problems, and apply biochemical principles to describe metabolic disorders or physiological processes.	L3
PSO4	Demonstrate competence in standard biochemical laboratory techniques, including preparation of buffers, quantification of biomolecules, enzyme assays, chromatography, and spectrophotometric analyses.	L4
PSO5	Demonstrate effective scientific communication skills, work collaboratively in laboratory and project settings, and exhibit professional ethics, safety awareness, and responsibility.	L5
PSO6	Design basic experiments, follow ethical research practices, maintain accurate laboratory records, and prepare scientific reports or presentations based on literature and experimental findings.	L6

Pedagogy: Constructivism, Flipped Classroom, Collaborative Learning, Integrative approach, Enquiry based learning

Assessment: Weightage for assessments (in percentage) For Major and Minor

Type of Course	Formative Assessment / IA	Summative Assessment
Theory	40 %	60 %

**VPM's B. N. Bandodkar College of Science (Autonomous),
Thane**
F. Y. B. Sc. (Biochemistry)
Structure of Programme

Course Code	Course Title	No. of lectures	Credits
Semester I			
Major			
23BUBC1T01	Biomolecules – I	30	2
23BUBC1T02	Cell Biology	30	2
23BUBC1P01	Practicals based on 23BUBC1T01 and 23BUBC1T02	60	2
Total		120	6
Vocational Skill Enhancement Course (VSC)			
23BU1VSC03	Laboratory Skills in Microbial Biochemistry	45	2
Total		45	2
Semester II			
Major			
23BUBC2T01	Biomolecules – II	30	2
23BUBC2T02	Biochemistry & Physiology	30	2
23BUBC2P01	Practicals based on 23BUBC2T01 and 23BUBC2T02	60	2
Total		120	6

Semester I

Course Code 23BUBC1T01	Course Title Biomolecules – I	Credits 2	No. of lectures
CO1	Explain the structure, bonding, and physicochemical properties of water and their role in biomolecular interactions.		L2
CO2	Analyze solute behavior, weak interactions, and concentration units in aqueous biochemical systems.		L4
CO3	Compare the different types of carbohydrates studying their structures.		L3
CO4	Analyze the types of lipids based on their structure and functions.		L4

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	0	0	0
CO2	2	2	1	1	0	1
CO3	3	2	1	0	0	0
CO4	3	2	1	0	0	0

Unit I Water	1.1 Biochemistry of Water: Structure and hydrogen bonding, Its effect on Biomolecules	15
	1.2 Hydrophobic & hydrophilic substances, Amphipathic compounds with examples	
	1.3 Properties (surface tension, latent heat, specific heat, viscosity, dielectric constant, Colligative properties) of water and their biological significance	
	1.4 Water as a universal solvent, Entropy and dissolution of solute	
	1.5 Effect of non-polar compounds on the structure of water, Weak interactions of biomolecules in aqueous solutions	
	1.6 Concentration units: Avogadro's number, mole, mole fraction, molarity, equivalent weight, normality, molality, percentage (Problems to be worked out)	
Unit II Carbohydrates & Lipids	2.1 Carbohydrates: Definition, detailed Classification of carbohydrates (mono, di, oligo, polysaccharides) Occurrence, structures and significance of each	15
	2.2 Physical Properties: Isomerism D & L, optical; epimers, anomers	
	2.3 Lipids: Definition and functions	
	2.4 Classification of Lipids (Bloor's):	

	<ul style="list-style-type: none">a. Simple (Fats, Oils, Waxes), Derived (Steroids, Sterols, Carotenoids)b. Compound Lipids: Functions of glycerophospholipids Phosphosphingolipids, Glycolipids (Any 3 Examples, structure and significance of each)c. Saturated fatty acids: classification of C2 to C20: even carbon: Common and IUPAC names.d. Unsaturated fatty acids: MUFA, PUFA (Types), Omega-fatty acids.e. Triacyl glycerol - simple and mixed - names and structure	
--	--	--

References

Sr. No.	Title & Author	Edition	Published in
1	Lehninger's Principles of Biochemistry - Nelson & Cox	6th	2012
2	Essentials of Biochemistry - Pankaja Naik	2nd	2017
3	Fundamentals of Biochemistry - Voet & Voet	4th	2010
4	Biochemistry - U. Satyanarayana & U. Chakrapani	4th	2013
5	Zubay's Principles of Biochemistry- Rastogi & Aneja	5th	2017

Course Code 23BUBC1T02	Course Title Cell Biology	Credits 2	No. of lectures
CO1	Compare prokaryotic and eukaryotic cell analysing cell wall, plasma membrane of different types of cells.		L3
CO2	Explain cell organelles along with their functions.		L2
CO3	Summarize the different components of cytoskeleton and extracellular matrix giving their significance.		L2
CO4	Elaborate on cell junctions, movement of fluid through cells, cell division and its checkpoints and differentiate between apoptosis and necrosis.		L2

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	2	1	1	0	0
CO2	3	1	1	0	0	0
CO3	3	1	1	0	0	0
CO4	3	1	1	0	0	0

Unit I Cell & Cell Organelles	1.1 Overview of Cell Theories 1.2 Comparison between Prokaryotic & Eukaryotic cells 1.3 Cell wall of Plant, Algae, Fungi, Bacteria 1.4 Plasma membrane 1.5 Organelles of Cell a. Nucleus & nucleolus: Structure & functions b. Mitochondria: Organization & functions c. Plastids: Types & functions d. Ribosomes: Structure & functions e. Golgi Apparatus: Structure & functions f. Functions of Lysosomes, Peroxisomes, Mesosomes, Magnetosomes, Glyoxysomes, Proteosomes	15
Unit II Cytoskeleton	2.1 Cytoskeleton: Comparative analysis of a. Microtubules (Occurrence, Structure, Chemical Composition, MAPs, MTOCs, Function) b. Microfilaments (Distribution, Chemical composition & Function)	15

	<p>c. Intermediate filaments (Introduction in brief, Assembly, Types & Function)</p> <p>2.2 Centrioles, Basal bodies, Cilia and Flagella</p> <p>2.3 Extracellular Matrix (proteins, polysaccharides and adhesion proteins)</p> <p>2.4 Cell Junctions (Anchoring, tight, Gap, Occluding, Desmosomes, Plasmodesmata)</p> <p>2.5 Concept of Apoplastic & Symplastic movement</p> <p>2.6 Cell Division: Cell Cycle & Check Points</p> <p>2.7 Concept of Necrosis & Apoptosis</p>
--	--

References

Sr. No.	Title & Author	Edition	Published in
1	Lehninger's Principles of Biochemistry - Nelson & Cox	6th	2012
2	Essentials of Biochemistry - Pankaja Naik	2nd	2017
3	Fundamentals of Biochemistry - Voet & Voet	4th	2010
4	Biochemistry - U. Satyanarayana & U. Chakrapani	4th	2013
5	Zubay's Principles of Biochemistry- Rastogi & Aneja	5th	2017
6	Cell Biology, Genetics, Molecular Biology, Evolution and Ecology - Verma & Agarwal	1st	2005
7	Prescott's Microbiology- Willey, Sherwood, Woolverton	10th	2016
8	Microbiology - Pelczar Michael J.; Chan Jr., E.C.S. , Krieg ,Noel R.	5th	2002
9	Cell Biology - Gerard Karp	7th	2014

Course Code 23BUBC1P01	Course Title Practicals based on 23BUBC1T01 and 23BUBC1T02	Credits 2	No. of lectures
CO1	Demonstrate the use of basic equipments used in biochemistry laboratory.		L3
CO2	Apply the basics of volume and concentrations to prepare and standardize chemical reagents, & determine acid value & SAP value of unknown lipid samples.		L4
CO3	Identify and estimate the presence of carbohydrates and lipids in unknown samples qualitatively.		L5
CO4	Observe and study cell organelles and cell cycle phases under microscope		L2

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	2	1	0	3	0
CO2	2	2	1	0	3	1
CO3	2	3	1	0	3	0
CO4	2	2	0	0	3	0

1	Working in Laboratory and Safety Measures	60 Hours
2	Basic instruments: Microscope, Centrifuge, Analytical balance, pH meter	
3	Calibration of volumetric glassware (Burette, pipette and measuring cylinder)	
4	Preparation of laboratory reagents & solutions - Concept of Molar, Normal and Percent	
5	Standardization of Laboratory Reagents	
6	Qualitative tests for Carbohydrates – Monosaccharides, Disaccharides Polysaccharides	
7	Detection of Unknown Carbohydrate	
8	Determination of Acid value of give oil sample	
9	Determination of SAP value of given oil sample	
10	Qualitative tests for lipids	
11	Effect of isotonic, hypertonic and hypotonic solutions on cells – onion peel	

12	Preparation of temporary mount of onion peel to observe and study epidermal cells	
13	Preparation of microscope slide for Monocot & Dicot leaf section	
14	Observation of stomata & guard cells in leaf under microscope	
15	Isolation of chloroplast from Spinach	
16	Detection of mitochondrial activity	
17	Study of stages of mitosis using onion root tips	
18	Observing stages of mitosis and meiosis using permanent slides	
19	Study the motility in bacteria by flagella using hanging drop method	
20	Observation of movement of paramecium using cilia	

Course Code	Course Title	Credits	No. of lectures
23BU1VSC03	Laboratory Skills in Microbial Biochemistry	1	
CO1	Elaborate on various microbial cells, bacterial growth and explain the use of dyes and stains for observing organelles in bacterial cells.	L3	
CO2	Analyse nutritional types of microbes, use of different media for their growth and study various methods of their preservation	L2	
CO3	Perform staining and isolation techniques to observe organisms and their colony characteristics	L5	
CO4	Choose correct media and incubation conditions for microbial cultivation	L4	

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	0	1	0	1
CO2	3	1	0	1	0	1
CO3	2	3	0	2	3	1
CO4	2	3	0	2	3	1

Unit I Basic Techniques in Microbiology	1.1 Microbial Diversity: Bacteria, Archaea, Fungi, Algae, Protozoa, Viruses) General features	15
	1.2 Observing Bacteria: Dyes and stains: Types, Physicochemical basis Fixatives, Mordants, Decolorizers, Simple and differential staining, Special Staining (Capsule, Cell wall)	
	1.3 Microbial Growth: Growth curve, optimum conditions, Nutritional requirements: Carbon, Oxygen, Hydrogen, Nitrogen, Phosphorus, Sulfur and growth factors, Nutritional types of microorganisms	
	1.4 Types of Culture media, Isolation of microorganisms and pure culture techniques	
	1.5 Preservation of microorganisms	

	Course Title	Credits	No. of lectures
1	Laboratory techniques in Microbial Biochemistry	1	
2	Microbiology Lab: Introduction to Autoclave, Hot air oven, Glassware, Nichrome loop, Methods of preparation of glassware for Sterilization		
	Observing variety of microorganisms (Diatoms, protozoa) in a drop of lake water under microscope		

3	Wet mount for observing fungi	30 Hours
4	Monochrome Staining, Negative staining	
5	Differential Staining: Gram Staining	
6	Special Staining: Capsule staining	
7	Isolation & Study of colony Characteristics	
8	Use of Differential & Selective Media: (MacConkey & SMA)	
9	Inoculation techniques (Spreading, Streaking, Swabbing, Stabbing)	
10	Study of Growth under different conditions of pH & Temperature	

References

Sr. No.	Title & Author	Edition	Published in
1	Prescott's Microbiology- Willey, Sherwood, Woolverton	10th	2016
2	Microbiology - Pelczar Michael J.; Chan Jr., E.C.S. , Krieg ,Noel R.	5th	2002
3	Foundations in Microbiology - Talaro & chess	8th	2001
4	Fundamental Principles of Bacteriology	2nd	1973

Semester II

Course Code 23BUBC2T01	Course Title Biomolecules – II	Credits 2	No. of lectures			
CO1	Describe and compare the structure and components of DNA with evidence to support its helical nature.	L2				
CO2	Analyze the physicochemical properties of DNA and differentiate between nuclelease activities and RNA categories, including uncommon RNAs.	L3				
CO3	Explain the structure, classification, stereochemistry, physical and chemical properties of standard and non-standard amino acids, along with their biological functions.	L2				
CO4	Analyze peptide and protein structural organization—primary to quaternary levels, properties, factors influencing protein stability, classification based on molecular shape and their biological importance	L3				
Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping						
	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	1	0	0	0
CO2	3	1	1	0	0	0
CO3	3	1	1	0	0	0
CO4	3	2	1	0	0	0
Unit I Nucleic Acids	1.1 Nucleic Acids: Structure - Purine & Pyrimidine bases, ribose, deoxyribose, nucleosides and nucleotides (ATP, CTP, GTP, TTP, UTP), phosphodiester linkage, Formation of polynucleotide strand with its shorthand Representation 1.2 DNA: Physical evidence of DNA helical structure. Chargaff's rules (chemical evidence), Watson-Crick model of DNA & its features, Properties of nucleotides - Effect of heat on physical properties of DNA: Viscosity, buoyant density, UV absorption, Hypochromism, hyperchromism, Denaturation and Renaturation of DNA, Types: A, B & Z 1.3 RNA: various types in prokaryotes and eukaryotes- mRNA & rRNA - general account, tRNA - clover leaf model, 1.4 Uncommon RNAs: snRNA, siRNA, miRNAs, snoRNAs, lncRNA, piRNAs, Ribozymes 1.5 Nucleases (Endo & Exo)		15			

Unit II Proteins & Amino Acids	2.1	Amino acids: Amino acid structure - D & L forms of all 20 amino acids, Detailed classification based on polarity, nutritional (essential and non-essential amino acid), Chemical structure and chemical nature, reactions with reagents	15
	2.2	Physical properties: Zwitter ions, pI of amino acids as ampholytes, melting point, optical rotation, UV absorption	
	2.3	Non-Standard amino acids, Functions of amino acids	
	2.4	Peptides and Proteins: ASBC - APS classification on the basis of molecular shape, composition and function	
	2.5	Primary structure - Formation and characterization of the peptide bond, Secondary structure - Alpha helix and beta sheet, Tertiary(myoglobin) and Quaternary (hemoglobin) structures	
	2.6	Properties of proteins	
	2.7	Protein denaturation (Concept, Conditions, denaturing agents, Enzymes, their mode of action)	
	2.8	Biological importance of Peptides	

References

Sr. No.	Title & Author	Edition	Published in
1	Essentials of Biochemistry - Pankaja Naik	2nd	2017
2	Biochemistry - U. Satyanarayana & U. Chakrapani	4th	2013
3	Fundamentals of Biochemistry - Jain & Jain	7th	2016
4	iGenetics: A molecular approach - Peter J. Russell	3rd	2016
5	Lehninger's Principles of Biochemistry - Nelson & Cox	6th	2012
6	Textbook of Biochemistry for Medical Students- Vasudevan	9th	2019

Course Code 23BUBC2T02	Course Title Biochemistry & Physiology	Credits 2	No. of lectures
CO1	Explain fundamental acid-base concepts including pH, pK, pKw, isoelectric pH, buffer and buffering capacity, derive key equations such as ionic product of water and Henderson–Hasselbalch equation and relate pI to pKa values for neutral, acidic and basic amino acids.		L2
CO2	Interpret ionization and titration curves of glycine, lysine and aspartic acid explaining the action of major physiological buffers and solve numerical problems related to pH, pK, pI and buffer systems.		L5
CO3	Describe body fluids, blood composition, haematopoiesis and plasma protein functions and interpret mechanisms of gas transport with hemoglobin involvement such as O ₂ dissociation curves, bohr effect and chloride shift.		L3
CO4	Summarize the composition, characteristics and functions of major body fluids including bile, lymph, urine, interstitial fluid, cerebrospinal fluid, synovial fluid, seminal fluid, tears, sweat and faeces and interpret their formation processes and diagnostic significance.		L2

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	3	1	1	0	0	0
CO2	3	2	1	0	0	0
CO3	3	2	1	0	1	0
CO4	3	2	1	0	2	0

Unit I pH & Buffers	1.1 Definition – pH, pK, pKw, isoelectric pH, buffer, buffering capacity, Electrolytic Dissociation & Electrolytes 1.2 Derivations: Ionic product of water, Hendersen– Hasselbalch equation 1.3 Relation between pI, pKa1 and pKa2 for a neutral, acidic and basic amino acid 1.4 Ionization and titration curves of glycine, lysine and aspartic acid; pKa and pI values of these amino acids 1.5 Buffers - Definition, action, Physiological buffers: Hb - HHb, carbonate bicarbonate, phosphate and protein 1.6 Numerical on above concepts	15
--	---	----

Unit II Blood & Body Fluids	2.1 Fluid compartments of the body—ICF and ECF 2.2 Haematopoesis Blood: Composition, characteristics and function 2.3 Role of plasma proteins, Starling hypothesis 2.4 Transport in Blood: Transport of gases CO_2 and O_2 , Role of hemoglobin, O_2 dissociation curves 2.5 Bohr effect, Chloride shift 2.6 Bile: Composition, characteristics and function; storage, Importance of testing Bile 2.7 Lymph: Composition, Formation and Circulation 2.8 Urine: Composition—normal and abnormal constituents; formation of urine, Importance of testing urine 2.9 Function, Characteristics and Composition of interstitial fluid, cerebrospinal fluid, synovial fluid, seminal fluid, tears, sweat and faeces	15
--	--	-----------

References

Sr. No.	Title & Author	Edition	Published in
1	Textbook of Medical Physiology - Guyten & Hall	11th	2017
2	Principles of Anatomy and Physiology - Tortora	12th	2008
3	Fundamentals of Biochemistry - Jain & Jain	7th	2016
4	Textbook of Medical Biochemistry - M N Chatterjea	8th	2012
5	Textbook of Biochemistry for Medical Students- Vasudevan	9th	2019
6	Lehninger's Principles of Biochemistry - Nelson & Cox	6th	2012
7	Biophysical Chemistry - Upadhyay , Upadhyay and Nath	1st	2009

Course Code 23BUBC2P01	Course Title Practicals based on 23BUBC2T01 and 23BUBC2T02	Credits 2	No. of lectures
CO1	Perform genomic DNA isolation from plant tissues and execute qualitative tests to detect nucleic acids, amino acids and proteins, including identification of an unknown protein sample.		L5
CO2	Execute protein purification steps including ammonium sulfate precipitation and dialysis, formulate buffers for experimental use and conduct acid-base titration of a polyprotic acid while evaluating the achromic point of salivary amylase.		L5
CO3	Extract citric acid from food and Assess pH of different food samples, perform density-gradient centrifugation of blood to separate its components, Measure RBC and WBC counts and detect bilirubin using standard biochemical tests.		L5
CO4	Detect presence of bile salts, analyze normal and abnormal constituents, titratable acidity of urine and determine hemoglobin content of blood.		L5

Grading will be as 3: High (>60%), 2: Moderate (40%-60%), 1: Low (<40%), 0: No mapping

	PO1	PO2	PO3	PO4	PO5	PO6
CO1	2	3	1	1	3	1
CO2	2	3	1	0	3	1
CO3	2	3	1	0	3	1
CO4	2	3	1	0	3	1

1	Isolation of genomic DNA from onion / Banana / Strawberry cells	60 Hours
2	Qualitative tests for Nucleic Acids	
3	Qualitative tests for Amino Acids	
4	Qualitative analysis for Protein	
5	Qualitative test to detect unknown protein.	
6	Ammonium sulphate precipitation of Proteins.	
7	Concept of Dialysis in Protein purification	
8	Preparation of buffers for experimental purpose	
9	Acid –Base titration of a Polyprotic acid	

10	Determination of the Achromic point of Salivary Amylase	
11	Extraction of citric acid from lemon juice	
12	Checking pH of various food samples/fruit juices	
13	Density gradient centrifugation of Blood using Ficoll-Hypaque	
14	Determination of RBC & WBC count	
15	Detection of Bilirubin (Iodine test/Gmelin's Nitric acid test/Fouchet's test)	
16	Detection of Bile salt (Pettenkofer's test, Hays sulphur test)	
17	Urine analysis- Normal and Abnormal constituents	
18	Urine Analysis by Dip Stick Method	
19	Estimation of titratable acidity of Urine	
20	Determination of Hemoglobin content by the Sahli's hemoglobinometer	

Curriculum mapping for the Undergraduate Degree Programme

F.Y.B.Sc Biochemistry

SEMESTER – I		Course imparts Employability (EM), Entrepreneurship (EN), Skill Development (SD)			Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)			
		EM	EN	SD	PE	GE	HV	ES
23BUBC1T01	Biomolecules – I	--	--	--	--	--	--	--
23BUBC1T02	Cell Biology	--	--	√	--	--	--	--
23BUBC1P01	Practicals based on 23BUBC1T01 and 23BUBC1T02	--	--	√	--	--	--	--
23BU1VSC03	Laboratory Skills in Microbial Biochemistry	√	√	√	--	--	--	--
<i>Total</i>		01	01	03	00	00	00	00

SEMESTER – II		Course imparts Employability (EM), Entrepreneurship (EN), Skill Development (SD)			Course integrates with Professional Ethics (PE), Gender Equity (GE), Human Value (HV), Environmental Sustainability (ES)			
		EM	EN	SD	PE	GE	HV	ES
23BUBC2T01	Biomolecules – II	--	--	--	--	--	--	√
23BUBC2T02	Biochemistry & Physiology	--	--	--	--	--	--	--
23BUBC2P01	Practicals based on 23BUBC2T01 and 23BUBC2T02	--	--	√	--	--	--	--
<i>Total</i>		00	00	01	00	00	00	01