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A B S T R A C T   

A general and efficient one pot protocol has been developed for the synthesis of benzimidazoles and pyrimidines 
using Zn and Ag@L-arginine Fe3O4 as a heterogeneous catalyst. The prepared catalyst provided good yields of the 
corresponding products within a short reaction time. Catalyst was characterized by using XRD, TEM, FEG-SEM, 
EDS, XPS, Raman, CHNS and FT-IR. The present method provided high yields of the products with wide sub
strates scope. The catalyst could be reused five cycles without a significant loss of catalytic activity.   

Introduction 

During the last few decades, magnetically separable materials area 
emerged as notable tool for organic transformations due to their prop
erties like easy separation, recyclability, and nonleaching nature of the 
catalyst in the reaction medium. These materials are used in a variety of 
fields, including administration of drugs, magnetic high-density infor
mation storage, magnetic resonance imaging, and cancer treatment [1]. 
Their magnetic features, prevent material loss and increases cost- 
effectiveness, making them appealing industrial-scale alternatives [2]. 
Magnetite, a type of magnetic material, is extensively studied for the 
creation of more environmentally benign reaction protocols, and the 
field is still productive for research [3]. 

Magnetic nanoparticle-based materials are being extensively 
explored as a green chemistry tool in organic synthesis, since they are 
easy to prepare, cost-effective, and environmentally friendly [4]. Het
erocyclic compounds, which are made up of carbon, nitrogen, and ox
ygen, are used in a wide range of potent drugs. The 2-aryl-substituted 
benzimidazoles and pyrimidines are found in pharmacologically active 
compounds and natural products [5,6]. These compounds are exten
sively used as antiviral, antimicrobial, antibiotic, antifungal, anticon
vulsant, antiulcer, analgesic, antihypertensive agents, [7] also light- 

emitting devices [8]. Benzimidazole derivatives act as effective fungi
cides [9] and also exhibit distinct pharmaceutical properties such as 
Telmisartan as AT1 receptor antagonists and Rabeprazole used in the 
treatment of gastric ulcers [10,11]. Oxibendazole, Albendazole,and 
Mebendazole to treat parasitosis, bis benzimidazole derivatives bind 
with DNA topoisomerase, also cytotoxic against breast adenocarcinoma 
[12,13]. Tetrahydropyrimidine derivatives exhibit powerful and selec
tive activities on a wide range of membrane receptors [14] and 
substituted derivatives of tetrahydropyrimidine are valuable building 
blocks for the synthesis of heterocycles that possess high activities to
wards cell-permeable antitumor scaffold, Monastrol, and antihyperten
sive agent (R)[15–17]. 

As a result, the development of novel synthetic methods for these 
heterocyclic molecules is crucial. In the last few decades, several elegant 
strategies for the synthesis of benzimidazoles derivatives have been well 
established by reacting 1,2 phenylenediamine with aldehyde/ carbox
ylic acids by using various catalysts such as Fe3O4@SiO2@ 
(CH2)3N+Me3I3–,[18] clay supported titanium catalyst,[19] lanthanum 
chloride,[20] NaY zeolite, [21] ceric ammonium nitrate/polyethylene 
glycol,[22] CoFe2O4, [23] DDQ [24]. However, in most of the earlier 
reports including ferrite and metals supported on ferrite catalysts, have 
drawbacks like longer reaction times, and high reaction temperatures 
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with costly and tedious catalyst preparation procedures. Similarly, the 
synthesis of pyrimidine is generally carried out using aldehyde, urea, 
and β-ketoester in presence of acid catalysts such as ZrOCl2⋅8H2O, [25] 
carrageenan moss/Fe3O4, [26] Fe3O4@C@OSO3H, [27] ionic-liquid like 
TiCl3OTf-[bmim]Cl, [28] Iron (III) Tosylate, [29] Cp2TiCl2 [30] and 
many more associated with some drawbacks of higher reaction tem
peratures, high catalyst loadings, and non-green protocols. 

The heterogeneous catalysis finds numerous applications in the 
preparation of important oxygen and nitrogen containing heterocycles. 
Their use in biologically active pharmaceuticals, agrochemicals, and 
functional materials is increasingly becoming more and more important 
[31–37]. In continuation of our efforts for the development of envi
ronmentally benign and efficient routes for various organic functional 
group transformations [38–43]. In the present study, L-arginine serves as 
a bridge between ferrite Fe3O4 and ZnO-Ag nanoparticles in a Zn-Ag@L- 
arginine Fe3O4 catalyst. In the present catalytic system, ZnO plays an 
important role as a Lewis acid catalyst [44] and Ag metal [45,46] for the 
activation of carbonyls and also plays a vital role in the transition states 
of reaction mechanisms like dehydration, oxidation, and cyclization. 
ZnO and silver metal enhance the catalytic activity of the material. 

To the best of our knowledge, the synthesis of 2-aryl-substituted 
benzimidazoles and pyrimidines using a recyclable and magnetically 
separable heterogeneous catalyst Zn-Ag @L-arginine Fe3O4 was not 
previously documented in the literature. 

Experimental 

Chemicals 

All chemicals and reagents were procured with the maximum purity 
obtainable from S.D. Fine Chemicals and utilized without further 
purification. 

Characterization 

Powder X-ray diffraction (XRD) was performed on a PANalytical, X’ 
Pert Pro diffractometer using Cu/Kα radiation with a wavelength of 

1.54184 Å in the range of 2θ range of 25–90◦. Scanning electron 
microscopic (SEM) images and EDS were collected on a JEOL JSM- 
7600F FEG-SEM microscope. Transmission electron microscopy (TEM) 
was performed with a PHILIPS CM 200 instrument (Operating voltages: 
20-200kv). FT-IR spectra of samples were investigated on a 3000 Hy
perion Microscope with Vertex 80 FTIR System (Bruker, Germany). X- 
ray photoelectron spectroscopy of the catalyst was recorded on a 
Thermo Fischer Scientific ESCALAB Xi + instrument and Raman spectra 
were studied with Raman-Horiba Japan Xplora Plus. Elemental analysis 
was investigated using Thermo Scientific, FlashSmart Elemental 
Analyzer. 1H and 13C NMR spectra were recorded on a Bruker Avance III, 
400 MHz, NMR instrument in DMSO‑d6 with TMS as the standard. 

Catalyst preparation: 

The catalyst Zn-Ag@L-arginine Fe3O4 (Scheme 1), was prepared ac
cording to a previously reported procedure with some modifications 
[47]. In a typical experiment, 100 mL of an aqueous 20 mM FeCl2 so
lution was stirred with 100 mL aqueous solution of 20 mM L-arginine 
solution under a nitrogen atmosphere at 10 ◦C, with the constant 
addition of 10 % NaOH solution to make the pH of the reaction mass 11 
to 12. The prepared material was heated to 80 ◦C for 1.5 h. further 
cooled at room temperature and filtered. The resulting solid material 
(Arginine ferrite) was then washed with pure water followed by ethanol 
and dried at 50 ◦C in an oven under a vacuum. In 100 mL round bottom 
assembly 1.0 g Arginine ferrite (solid material) with 0.6 g of Zn(NO3)2 
and 0.2 g of AgNO3 with 10 % SDS (Sodium dodecyl sulfate) in 50 mL 
water sonicated for 1.5 h. The pH of the resultant solution maintains at 
10 to 11 by adding hydrazine hydrate and heating for 3 h at 80 ◦C. The 
resultant material cooled for 1.5 h at room temperature and filtered solid 
material was washed with water followed by ethanol. 

Typical experimental procedure: 

General procedure for the synthesis of 2-aryl-substituted benzimidazoles: 
The Zn-Ag@L-arginine Fe3O4 (5 mol%) catalyst was added to a so

lution of o-phenylenediamine (1 mmol) and aldehyde (1 mmol) in 5 mL 

Scheme 1. Preparation of Zn-Ag @L-arginine Fe3O4 Catalyst.  
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of ethanol. The mixture was stirred and heated at 65 ◦C for 20–45 min. 
and reaction progress was monitored by using TLC. After completion of 
the reaction, the catalyst was recovered using an external magnet. The 
reaction mixture was quenched and extracted with dichloromethane 
(25 mL) and washed with water. The organic phase was separated, dried 
on Na2SO4 and concentrated in a vacuum to get the crude solid. The 
crude compounds were purified by silica gel column chromatography. 

General procedure for the synthesis of pyrimidines:. The Zn-Ag@L-arginine 
Fe3O4 (5 mol %) catalyst was added to a solution of aldehyde (1 mmol), 
urea (1 mmol) and ethyl acetoacetate (1 mmol), in 5 mL of ethanol. The 
mixture was stirred and heated at 45 ◦C temp. for 30–60 min. and re
action progress was monitored by using TLC. After completion of the 
reaction, the catalyst was recovered using an external magnet. The re
action mixture was quenched and extracted with dichloromethane (25 
mL) and washed with water. The organic phase was separated, dried on 
Na2SO4, and concentrated in a vacuum to get the crude solid. The crude 
compounds were purified by silica gel column chromatography. 

Results and discussion 

Characterization of catalyst 

X-ray diffraction (XRD) 
The structural analysis of the Zn-Ag@L-arginine Fe3O4 was investi

gated by using powder X-ray diffraction (XRD) in the range of 2θ be
tween 25◦ to 90◦. From the XRD pattern of the catalyst (Fig. 1), it can be 
observed that all the reflection peaks match well with the standard 
lattice parameter of magnetite nanoparticles. Strong diffraction peaks at 
2θ of 30.10◦, 35.48◦, 43.15◦, 53.47◦, 56.97◦, and 62.43◦ belong to the 
peaks of (220), (311), (400), (422) (511) and (440) of the 
Fe3O4(JCPDS card No. 19–0629) [48,49]. Due to the low percentage of 
Zn (6.01 % by EDS) and Ag (0.46 % by EDS), the peaks of Zn and Ag are 
not detectable in the XRD spectrum [3]. The average particle size of 
nanoparticles obtained was 27 nm using the Scherrer equation. 

FT-IR and Raman spectra 
The FT-IR spectrum of Zn-Ag@L-arginine Fe3O4 in the spectral range 

from 400 to 4000 cm− 1 is shown in Fig. 2 (a-b). The Fe-O lattice vi
bration is characterized by a prominent IR band at around 594 cm− 1 

(Fig. 2b) [50], while the N–H stretching vibrations at 3404 cm-1 and the 
bending mode of the free NH2 group at 1616 cm− 1 confirm arginine 
coating (Fig. 2b) [51]. IR peaks in the region of 760–1180 cm− 1, mainly 
due to the C–C stretching and C–N stretching vibrations in the catalyst 
[52]. The low intensity peak formed at 1410 cm− 1 which indicates the 
symmetric stretching of the CO2

–. An absorption band was observed at 
around 460 cm− 1; which corresponds to the shifting of the v2 band of the 
Fe–O bond of magnetite to a higher wavenumber [51]. Thus, confirming 
the existence of arginine molecules on nanoparticle surfaces. As a result, 
magnetite nanoparticles are stabilized by arginine via the carboxyl 
group, forming an attachment of the arginine to the magnetite particle. 

The Raman spectra of the Zn-Ag@L-arginine Fe3O4 (Fig. 3) show a 
strong peak at 1618 cm− 1 assigned to mainly antisymmetric stretching 
of the CO2

- group. The weak band appeared at 1211 cm− 1 assigned to the 
wagging mode of the NH2 group of the arginine [53]. The spectrum 
shows a sharp band at 248 cm− 1, ascribed to the stretching vibrations of 
Ag–N which confirms the formation of silver nanoparticles [46,54]. 

FEG-SEM 
The surface morphology of Zn-Ag@L-arginine Fe3O4 heated for 3 hr. 

at 80 ◦C was characterized by using the scanning electron microscopy 
technique. The SEM micrographs of Zn-Ag @L-arginine Fe3O4 results as 
shown in Fig. 4 a-c. EDS confirms the presence of Zn and Ag metals in the 
prepared nanomaterial (Table 1, Fig. 4 d). 

Fig. 1. XRD of Zn-Ag@L-arginine Fe3O4.  

Fig. 2. FT-IR spectra of (a) arginine Fe3O4 (b) Zn-Ag@L-arginine Fe3O4.  

Fig. 3. Raman spectra of Zn-Ag@L-arginine Fe3O4.  
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Transmission electron microscopy (TEM) 
A TEM micrograph of Zn-Ag@L-arginine Fe3O4 was acquired to 

obtain additional information on particle size and shape. The TEM im
ages of Zn-Ag @L-arginine Fe3O4 results confirm the formation of Fe3O4 
nanoparticles. (Fig. 5, a-d) In XRD analysis an average particle size was 
calculated and found to be 27 nm using the Scherrer equation. 

Fig. 4. (a-c) FEG-SEM image of Zn-Ag@L-arginine Fe3O4, (d)EDS profile of Zn-Ag@L-arginine Fe3O4.  

Table 1 
Elemental composition of the Zn-Ag @L-arginine Fe3O4.  

No. Element Weight% Atomic% 

1 Fe  92.20  93.54 
2 Zn  6.93  6.01 
3 Ag  0.87  0.46  

Fig. 5. (a-d) TEM of Zn-Ag @L-arginine Fe3O4.  
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X-ray photoelectron spectra 
The results of the XPS measurements are shown in Fig. 6. After 

getting an idea about the elemental profile the high-resolution spectra of 
Ag, C, Fe, N, O and Zn are shown in the plot. The peaks for both Ag 3d5/2 
and Ag 3d3/2 appeared in spectra with a peak separation of 5.9 eV 
indicating the formation of metallic silver [55,56]. The XPS peak of C 1 s 
is characterized with the peak at its usual position, additionally, the 
peak at around 288 eV is indicative of the presence of functionalized 
carbon. The XPS spectra of Fe has been characterized with two peaks Fe 
2p3/2 and Fe 2p1/2, additionally, a satellite peak has been observed at 
around 719 eV. In the O 1s spectra, the peak can be seen with a hump at 
532 eV, which is indicative of the oxygen present as C––O. The XPS 
peaks for N and Zn are observed at their usual position. The peaks of 
both Zn 2p1/2 and Zn 2p3/2 appeared in spectra with bonding energies 
difference of 23.15 eV suggesting + 2 oxidation state of zinc [56,57]. 

Catalytic activity studies: 

Initially, in order to explore the applicability of Zn-Ag@L-arginine 
Fe3O4 catalyst, the model reaction of o-phenylenediamine 1 and alde
hyde 2 (1.0 mmol each) for the synthesis of benzimidazoles 3 (Scheme 
2) was carried out. In case of heterogeneous catalyzed reactions, catalyst 
concentration is one of the most important factors and hence, we have 
screened the amount of catalyst required for the maximum yield of the 
product. It is noteworthy that, in the absence of a catalyst no significant 
product formation was observed even after an extended reaction time of 
60 min (Table 2, entry 1). In presence of Zn-Ag @L-arginine Fe3O4 
catalyst, 5 mol % amount was found to give 96 % yield of the desired 

product as compared to 2 mol% (Table 2, entries 2–3). Further, an in
crease of catalyst amount from 5 to 20 mol% shows a slight decrease in 
catalytic activity from 96 to 95 % yield of the product (Table 2, entries 
4–5). 

The effect of the temperature study revealed that product yield 
significantly increases when temperature increases from room 

Fig 6. XPS spectra of Zn-Ag@L-arginine Fe3O4 catalyst (a) Ag 3 d, (b) C 1 s, (c)Fe 2p, (d)N 1 s,(e)O1s, (f)Zn 2p.  

Scheme 2. Synthesis of 2-aryl-substituted benzimidazoles catalyzed by Zn-Ag @L-arginine Fe3O4.  

Table 2 
Effect of various reaction conditions on the synthesis of 2-aryl-substituted 
benzimidazolesa.  

Entry Catalyst (mol 
%) 

Solvent Temp. 
(◦C) 

Time (min.) Yieldb(%) 

Effect of catalyst loading 
1 – EtOH 65 60 20 
2 2 EtOH 65 60 89 
3 5 EtOH 65 30 96 
4 10 EtOH 65 30 95 
5 20 EtOH 65 30 95 
Effect of temperature 
6 5 EtOH r.t. 60 45 
7 5 EtOH 45 60 68 
8 5 EtOH 65 30 96 
Effect of solvents 
9 5 solvent free 65 30 80 
10 5 acetonitrile 65 30 56 
11 5 CH2Cl2 Reflux 60 40 
12 5 water 65 60 60 
13 5 EtOAC 65 90 70  

a Reaction conditions: benzaldehyde (1 mmol), o-phenyldiamine (1 mmol), 
solvent 5 mL, catalyst mol % (w.r.t. benzaldehyde), bIsolated yield. 
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temperature to 65 ◦C (Table 2, entries 6–8). The effect of the reaction 
medium was also evaluated with solvents such as acetonitrile, CH2Cl2, 
water, and EtOAc (Table 2, entries 10–13). Under solvent-free condi
tions, a good amount of product yield was obtained (Table 2, entry 9), 
whereas ethanol mediated reaction provided 96 % yield within 30 min. 
of reaction time (Table 2, entry 3). 

To study the wide applicability of Zn-Ag@L-arginine Fe3O4, we have 
carried out a substrate study using structurally varied aldehydes. The 
catalyst afforded good to moderate product yields for both electrons 
donating (–CH3, –OH, –OCH3, -C4H4) and electron withdrawing (-Cl, -Br, 
–NO2) substituents (Table 3, entries 1–12). In all cases, the reaction 
smoothly took place under optimized reaction conditions. 

The applicability of the prepared catalyst was further explored for 
the synthesis of pyrimidines 7 by taking a mixture of aldehyde 4 (1 
mmol), urea 5 (1 mmol), and ethyl acetoacetate 6 (1 mmol), in presence 
of Zn-Ag@L-arginine (Scheme 3). In the broad optimization study, the 
amount of catalyst was tested for the model reaction. In absence of a 
catalyst, no significant product formation was observed under the same 
set of conditions even after an extended reaction time of 90 min (Table 4, 
entry 1). An increase in catalyst loading from 2 to 5 mol % enhanced the 
product yield from 75 to 98 % (Table 4, entries 2–3). Further, an in
crease in catalyst loading had no remarkable effect on product yield 
(Table 4,entries 4–5). Thus 5 mol % of catalyst loading was selected as 
the optimum concentration for further studies (Table 4, entry 3). Simi
larly, temperature dependence was found for the model reaction, the 
optimum results were found at 45 ◦C in comparison to other tempera
tures evaluated (Table 4, entries 6–8). 

The effect of solvents has been screened by using toluene, 
dichloromethane, water, and ethyl acetate (Table 4, entries 10–13). 
Interestingly in solvent free conditions, a moderate yield of 65 % was 
obtained for the model reaction (Table 4, entry 9). In ethanol mediated 
reaction highest 98 % yield of the desired product was furnished within 
25 min of reaction time (Table 4, entry 3). 

To check the versatility of the Zn-Ag@L-arginine Fe3O4, we have 
shown a wide substrate scope by using structurally diverse groups on 
aldehydes. The catalyst afforded a good to moderate product yield for 
both electrons donating (–CH3, –OCH3,) and electron withdrawing (-Cl, 

–NO2) substituents on benzaldehyde (Table 5, entries 1–7). The reaction 
between, thiophene-2-carboxaldehyde, urea, and ethylacetoacetate also 
provided 91 % yield of the product within 45 min of reaction time 
(Table 5, entry 8). However, in most cases, benzaldehydes containing 
electron withdrawing groups took a long time to complete the reaction. 

Based on the results of these experiments, a plausible reaction 
pathway for the synthesis of benzimidazoles involves the formation of 
imine (c) in the first step via condensation of o-phenyldiamine (a) in 
presence of electron-deficient carbonyl carbon of aldehyde (b) activated 
by the silver metal sites [46] of Zn-Ag@L-arginine Fe3O4 with the 
removal of one H2O molecule (Scheme 4). Furtherimine intermediate 
undergoes the ring closure by attachment of a nitrogen atom lone pair to 
Lewis acid sites of the catalyst (ZnO) to form unstable benzimidazoline 
(d) [24].Then, two hydrogen atoms were removed in the presence of 
silver metal from the catalysts and finally, benzimidazole derivatives (e) 
were prepared [58]. However, further study is needed to support the 

Table 3 
Reaction between various aldehydes and o-phenyldiamine catalyzed by Zn- 
Ag@L-arginine Fe3O4

a.  

Entry R Product Time (min) Yieldb(%) 

1 H 3a 25 96 
2 4-CH3 3b 40 96 
3 4-Cl 3c 20 98 
4 4-Br 3d 30 95 
5 4-F 3e 25 94 
6 2-OH 3f 30 92 
7 4-OH 3 g 25 97 
8 2-OCH3 3 h 30 93 
9 4-OCH3 3i 35 91 
10 3-NO2 3j 30 95 
11 4-NO2 3 k 20 98 
12 -C4H4 3 l 45 91  

a Reaction conditions: aldehyde (1 mmol), o-phenyldiamine (1 mmol), 
ethanol- 5 mL, temp-65 ◦C, catalyst − 5 mol %, (w.r.t. aldehyde),bIsolated yield. 

Scheme 3. Multicomponent synthesis of pyrimidines catalyzed by Zn-Ag@L-arginine Fe3O4.  

Table 4 
Effect of various reaction conditions on the synthesis of pyrimidinesa.  

Entry Catalyst (mol 
%) 

Solvent Temp. 
(◦C) 

Time 
(min.) 

Yieldb(%) 

Effect of catalyst loading 
1 – EtOH 45 90 34 
2 2 EtOH 45 45 75 
3 5 EtOH 45 25 98 
4 10 EtOH 45 30 98 
5 20 EtOH 45 30 98 
Effect of temperature 
6 5 EtOH r.t. 30 42 
7 5 EtOH 45 25 98 
8 5 EtOH 65 30 96 
Effect of solvents 
9 5 solvent 

free 
45 25 65 

10 5 toluene 45 60 85 
11 5 CH2Cl2 Reflux 80 70 
12 5 water 45 40 65 
13 5 EtOAc 45 140 89  

a Reaction conditions: benzaldehyde (1 mmol), ethylacetoacetate (1 mmol), 
urea (1 mmol), solvent- 5 mL, catalyst mol % (w.r.t. benzaldehyde), bIsolated 
yield. 

Table 5 
Three component reaction between various benzaldehyde, ethylacetoacetate, 
and urea catalyzed by Zn-Ag@L-arginine Fe3O4

a.  

Entry R Product Time (min) Yieldb(%) 

1 C6H5 7a 30 98 
2 4-CH3-C6H4 7b 40 96 
3 2-Cl-C6H4 7c 55 95 
4 4-Cl-C6H4 7d 30 96 
5 4-OCH3-C6H4 7e 45 97 
6 3-NO2-C6H4 7f 60 93 
7 4-NO2-C6H4 7 g 40 95 
8 C4H3S 7 h 45 91  

a Reaction conditions: aldehyde (1 mmol), ethylacetoacetate (1 mmol), urea 
(1 mmol), ethanol- 5 mL, temp- 45 ◦C, catalyst − 5 mol %, (w.r.t. aldehyde), 
bIsolated yield. 
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Scheme 4. A plausible reaction mechanism for the synthesis of benzimidazoles.  

Scheme 5. Proposed reaction pathway for synthesis of pyrimidines catalyzed by Zn-Ag@L-arginine Fe3O4.  
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postulated reaction mechanism. 
The possible reaction mechanism of pyrimidine synthesis catalyzed 

by Zn-Ag@L-arginine Fe3O4 as a catalyst is depicted in Scheme 5. The 
reaction between benzaldehyde (f) and urea (g) generates iminium 
cation (h) via the addition of urea to electron-deficient carbonyl carbon 
of aldehyde (b) activated by the silver metal sites [46] of the catalyst. 
Subsequently, the addition of 1,3 dicarbonyl compound (i) with imi
nium cation (h) to form (j), which on cyclization and dehydration forms 
the corresponding product (k) in presence of Lewis acid sites of the 
catalyst. Following the formation of the product, the catalyst is free to 
participate in the next catalytic cycle [59]. However, further investi
gation is required to confirm the proposed reaction mechanism and 
synergetic effect of Ag and ZnO may play an important role in the 
reaction. 

The reusability of catalysts is an important factor in determining the 
industry’s potential applications. The recyclability of the catalyst was 
studied for five successive cycles for the synthesis of benzimidazoles and 
pyrimidines (Fig. 7). During the investigation, it was observed that the 
catalyst could be successfully separated and recycled by using a magnet 
without diminishing any catalytic activity. These results reveal that the 
given approach is effective and has several advantages over earlier 
protocols. 

The study was further extended to confirm the heterogeneous nature 
of the catalyst by a hot filtration method. Both model reactions were 
carried out using optimized reaction conditions and the reaction mass 
was separated from the catalysts after 10 min of reaction time. The re
action mass was subsequently agitated for further 60 min without 

catalysts, and no further product formation was noted, showing the 
heterogeneous nature of the catalyst. 

The current methodology for the synthesis of benzimidazole 
(Table 6) and pyrimidine (Table 7) is compared with some of the re
ported methods in the literature, and it is concluded that the present 
protocol offered a valuable improvement over the existing techniques. 

Conclusion: 

In summary, we have developed a green and efficient protocol for the 
synthesis of 2-aryl-substituted benzimidazoles and pyrimidines in 
ethanol using a magnetically separable Zn-Ag@L-arginine Fe3O4 cata
lyst. The material shows remarkable activity tolerance for aldehydes 
with both electron withdrawing and donating substituents present on 
the aromatic compounds. The catalytic material can be easily retrieved 
by using a magnet and reused without further treatment up to five 
catalytic cycles without a remarkable decline in catalytic activity. The 
protocol outperforms previous approaches due to its simple work-up 
procedure, mild reaction conditions, magnetically separable material, 
and reusability of the catalyst, which make the protocol more attractive 
and a useful contribution to the present methodologies. 
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Fig. 7. Recyclability study of Zn-Ag @L-arginine Fe3O4.  

Table 6 
Comparison of the present work with some reported methods for the synthesis of 
benzimidazoles.  

No. Catalyst and Conc. Time Yield 
(%) 

Temperature 
(◦C) 

Reference 

1 Fe3O4@SiO2@ 
(CH2)3N+Me3I3–, 
(0.007 g for 1 mmol of 
OPD) 

13–20 
min 

88–94 100 ◦C 18 

2 Clay-supported 
titanium catalyst, 
(0.25 g for 1 mol of 
OPD) 

2 h 62–82 120 ◦C 19 

3 Lanthanum Chloride 
(10 mol %) 

2–4 h 85–95 r.t 20 

4 NaY Zeolite (100 mg 
for 0.0025 mol of OPD) 

48 h 26–93 r.t. 21 

5 Ceric ammonium 
nitrate/ polyethylene 
glycol (5 mol %) 

1.5–3 h 90–98 50 ◦C 22 

6 CoFe2O4 (5 mol%), 
grinding 

7–11 
min 

88–97 – 23 

7 Zn-Ag @L-arginine 
Fe3O4(5 mol %,w.r.t. 
aldehyde) 

20 – 40 
min 

91–98 65 ◦C Present 
work  

Table 7 
Comparison of the present work with some reported methods for the synthesis of 
pyrimidines.  

Sr. 
No 

Catalyst and conc. Time Yield 
(%) 

Temperature Reference 

1 Magnetic core–shell 
Carrageenan moss/ 
Fe3O4(10 mg for 1 
mmol of aldehyde) 

45–90 
min. 

73–95 H2O-Reflux 26 

2 Fe3O4@C@OSO3H 
(8.1 mol%) 

15–105 
min 

80–97 80 ◦C 27 

3 TiCl3OTf-[Bmim]Cl 
(15 % mol) 

15–40 
min 

70–95 140 ◦C 28 

4 Iron (III) Tosylate (5 
mol%) 

2.5 – 43 
h 

62–9 70–125 ◦C 29 

5 Cp2TiCl2 (0.1 mmol) 9 h 12–93 70 ◦C 30 
6 Zn-Ag @L-arginine 

Fe3O4(5 mol %w.r.t. 
aldehyde) 

30–60 
min 

91–98 45 ◦C Present 
work  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.rechem.2022.100655. 
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