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A general and efficient one pot protocol has been developed for the synthesis of benzimidazoles and pyrimidines
using Zn and Ag@t-arginine Fe304 as a heterogeneous catalyst. The prepared catalyst provided good yields of the
corresponding products within a short reaction time. Catalyst was characterized by using XRD, TEM, FEG-SEM,
EDS, XPS, Raman, CHNS and FT-IR. The present method provided high yields of the products with wide sub-
strates scope. The catalyst could be reused five cycles without a significant loss of catalytic activity.

Introduction

During the last few decades, magnetically separable materials area
emerged as notable tool for organic transformations due to their prop-
erties like easy separation, recyclability, and nonleaching nature of the
catalyst in the reaction medium. These materials are used in a variety of
fields, including administration of drugs, magnetic high-density infor-
mation storage, magnetic resonance imaging, and cancer treatment [1].
Their magnetic features, prevent material loss and increases cost-
effectiveness, making them appealing industrial-scale alternatives [2].
Magnetite, a type of magnetic material, is extensively studied for the
creation of more environmentally benign reaction protocols, and the
field is still productive for research [3].

Magnetic nanoparticle-based materials are being extensively
explored as a green chemistry tool in organic synthesis, since they are
easy to prepare, cost-effective, and environmentally friendly [4]. Het-
erocyclic compounds, which are made up of carbon, nitrogen, and ox-
ygen, are used in a wide range of potent drugs. The 2-aryl-substituted
benzimidazoles and pyrimidines are found in pharmacologically active
compounds and natural products [5,6]. These compounds are exten-
sively used as antiviral, antimicrobial, antibiotic, antifungal, anticon-
vulsant, antiulcer, analgesic, antihypertensive agents, [7] also light-
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emitting devices [8]. Benzimidazole derivatives act as effective fungi-
cides [9] and also exhibit distinct pharmaceutical properties such as
Telmisartan as AT; receptor antagonists and Rabeprazole used in the
treatment of gastric ulcers [10,11]. Oxibendazole, Albendazole,and
Mebendazole to treat parasitosis, bis benzimidazole derivatives bind
with DNA topoisomerase, also cytotoxic against breast adenocarcinoma
[12,13]. Tetrahydropyrimidine derivatives exhibit powerful and selec-
tive activities on a wide range of membrane receptors [14] and
substituted derivatives of tetrahydropyrimidine are valuable building
blocks for the synthesis of heterocycles that possess high activities to-
wards cell-permeable antitumor scaffold, Monastrol, and antihyperten-
sive agent (R)[15-17].

As a result, the development of novel synthetic methods for these
heterocyclic molecules is crucial. In the last few decades, several elegant
strategies for the synthesis of benzimidazoles derivatives have been well
established by reacting 1,2 phenylenediamine with aldehyde/ carbox-
ylic acids by wusing various catalysts such as Fe304@SiO.@
(CH3)3sN™Mesl3,[18] clay supported titanium catalyst,[19] lanthanum
chloride,[20] NaY zeolite, [21] ceric ammonium nitrate/polyethylene
glycol,[22] CoFey04 [23] DDQ [24]. However, in most of the earlier
reports including ferrite and metals supported on ferrite catalysts, have
drawbacks like longer reaction times, and high reaction temperatures
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Scheme 1. Preparation of Zn-Ag @1-arginine Fe30,4 Catalyst.

with costly and tedious catalyst preparation procedures. Similarly, the
synthesis of pyrimidine is generally carried out using aldehyde, urea,
and p-ketoester in presence of acid catalysts such as ZrOCl,-8H20, [25]
carrageenan moss/Fe304 [26] Fes04@C@O0SOsH, [27] ionic-liquid like
TiClgOTf-[bmim]Cl, [28] Iron (III) Tosylate, [29] Cp2TiCly [30] and
many more associated with some drawbacks of higher reaction tem-
peratures, high catalyst loadings, and non-green protocols.

The heterogeneous catalysis finds numerous applications in the
preparation of important oxygen and nitrogen containing heterocycles.
Their use in biologically active pharmaceuticals, agrochemicals, and
functional materials is increasingly becoming more and more important
[31-37]. In continuation of our efforts for the development of envi-
ronmentally benign and efficient routes for various organic functional
group transformations [38-43]. In the present study, 1-arginine serves as
a bridge between ferrite Fe304 and ZnO-Ag nanoparticles in a Zn-Ag@1-
arginine Fe3Q4 catalyst. In the present catalytic system, ZnO plays an
important role as a Lewis acid catalyst [44] and Ag metal [45,46] for the
activation of carbonyls and also plays a vital role in the transition states
of reaction mechanisms like dehydration, oxidation, and cyclization.
ZnO and silver metal enhance the catalytic activity of the material.

To the best of our knowledge, the synthesis of 2-aryl-substituted
benzimidazoles and pyrimidines using a recyclable and magnetically
separable heterogeneous catalyst Zn-Ag @u-arginine Fe3O4 was not
previously documented in the literature.

Experimental
Chemicals
All chemicals and reagents were procured with the maximum purity

obtainable from S.D. Fine Chemicals and utilized without further
purification.

Characterization

Powder X-ray diffraction (XRD) was performed on a PANalytical, X’
Pert Pro diffractometer using Cu/Ka radiation with a wavelength of

1.54184 A in the range of 20 range of 25-90°. Scanning electron
microscopic (SEM) images and EDS were collected on a JEOL JSM-
7600F FEG-SEM microscope. Transmission electron microscopy (TEM)
was performed with a PHILIPS CM 200 instrument (Operating voltages:
20-200kv). FT-IR spectra of samples were investigated on a 3000 Hy-
perion Microscope with Vertex 80 FTIR System (Bruker, Germany). X-
ray photoelectron spectroscopy of the catalyst was recorded on a
Thermo Fischer Scientific ESCALAB Xi + instrument and Raman spectra
were studied with Raman-Horiba Japan Xplora Plus. Elemental analysis
was investigated using Thermo Scientific, FlashSmart Elemental
Analyzer. 'H and '3C NMR spectra were recorded on a Bruker Avance III,
400 MHz, NMR instrument in DMSO-dg with TMS as the standard.

Catalyst preparation:

The catalyst Zn-Ag@t-arginine FezO4 (Scheme 1), was prepared ac-
cording to a previously reported procedure with some modifications
[47]. In a typical experiment, 100 mL of an aqueous 20 mM FeCl; so-
lution was stirred with 100 mL aqueous solution of 20 mM r-arginine
solution under a nitrogen atmosphere at 10 °C, with the constant
addition of 10 % NaOH solution to make the pH of the reaction mass 11
to 12. The prepared material was heated to 80 °C for 1.5 h. further
cooled at room temperature and filtered. The resulting solid material
(Arginine ferrite) was then washed with pure water followed by ethanol
and dried at 50 °C in an oven under a vacuum. In 100 mL round bottom
assembly 1.0 g Arginine ferrite (solid material) with 0.6 g of Zn(NOs),
and 0.2 g of AgNO3 with 10 % SDS (Sodium dodecyl sulfate) in 50 mL
water sonicated for 1.5 h. The pH of the resultant solution maintains at
10 to 11 by adding hydrazine hydrate and heating for 3 h at 80 °C. The
resultant material cooled for 1.5 h at room temperature and filtered solid
material was washed with water followed by ethanol.

Typical experimental procedure:

General procedure for the synthesis of 2-aryl-substituted benzimidazoles:
The Zn-Ag@:r-arginine Fe304 (5 mol%) catalyst was added to a so-
lution of o-phenylenediamine (1 mmol) and aldehyde (1 mmol) in 5 mL
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Fig. 2. FT-IR spectra of (a) arginine Fe304 (b) Zn-Ag@tr-arginine Fe30,.

of ethanol. The mixture was stirred and heated at 65 °C for 20-45 min.
and reaction progress was monitored by using TLC. After completion of
the reaction, the catalyst was recovered using an external magnet. The
reaction mixture was quenched and extracted with dichloromethane
(25 mL) and washed with water. The organic phase was separated, dried
on NaySO4 and concentrated in a vacuum to get the crude solid. The
crude compounds were purified by silica gel column chromatography.

General procedure for the synthesis of pyrimidines:. The Zn-Ag@t-arginine
Fe304 (5 mol %) catalyst was added to a solution of aldehyde (1 mmol),
urea (1 mmol) and ethyl acetoacetate (1 mmol), in 5 mL of ethanol. The
mixture was stirred and heated at 45 °C temp. for 30-60 min. and re-
action progress was monitored by using TLC. After completion of the
reaction, the catalyst was recovered using an external magnet. The re-
action mixture was quenched and extracted with dichloromethane (25
mL) and washed with water. The organic phase was separated, dried on
NaySO4, and concentrated in a vacuum to get the crude solid. The crude
compounds were purified by silica gel column chromatography.
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Fig. 3. Raman spectra of Zn-Ag@1-arginine Fe3Oy,
Results and discussion
Characterization of catalyst

X-ray diffraction (XRD)

The structural analysis of the Zn-Ag@r-arginine Fe3O4 was investi-
gated by using powder X-ray diffraction (XRD) in the range of 20 be-
tween 25° to 90°. From the XRD pattern of the catalyst (Fig. 1), it can be
observed that all the reflection peaks match well with the standard
lattice parameter of magnetite nanoparticles. Strong diffraction peaks at
260 of 30.10°, 35.48°, 43.15°, 53.47°, 56.97°, and 62.43° belong to the
peaks of (220), (311), (400), (422) (511) and (440) of the
Fe304(JCPDS card No. 19-0629) [48,49]. Due to the low percentage of
Zn (6.01 % by EDS) and Ag (0.46 % by EDS), the peaks of Zn and Ag are
not detectable in the XRD spectrum [3]. The average particle size of
nanoparticles obtained was 27 nm using the Scherrer equation.

FT-IR and Raman spectra

The FT-IR spectrum of Zn-Ag@t-arginine Fe30,4 in the spectral range
from 400 to 4000 cm ™' is shown in Fig. 2 (a-b). The Fe-O lattice vi-
bration is characterized by a prominent IR band at around 594 cm™!
(Fig. 2b) [50], while the N—H stretching vibrations at 3404 cm’! and the
bending mode of the free NH, group at 1616 cm™! confirm arginine
coating (Fig. 2b) [51]. IR peaks in the region of 760-1180 cm_l, mainly
due to the C—C stretching and C—N stretching vibrations in the catalyst
[52]. The low intensity peak formed at 1410 cm ™! which indicates the
symmetric stretching of the CO3. An absorption band was observed at
around 460 cm~}; which corresponds to the shifting of the v2 band of the
Fe-O bond of magnetite to a higher wavenumber [51]. Thus, confirming
the existence of arginine molecules on nanoparticle surfaces. As a result,
magnetite nanoparticles are stabilized by arginine via the carboxyl
group, forming an attachment of the arginine to the magnetite particle.

The Raman spectra of the Zn-Ag@t-arginine Fe3O4 (Fig. 3) show a
strong peak at 1618 cm ™! assigned to mainly antisymmetric stretching
of the CO5 group. The weak band appeared at 1211 cm™! assigned to the
wagging mode of the NH, group of the arginine [53]. The spectrum
shows a sharp band at 248 cm ™7, ascribed to the stretching vibrations of
Ag-N which confirms the formation of silver nanoparticles [46,54].

FEG-SEM

The surface morphology of Zn-Ag@:-arginine Fe304 heated for 3 hr.
at 80 °C was characterized by using the scanning electron microscopy
technique. The SEM micrographs of Zn-Ag @Lv-arginine Fe3O4 results as
shown in Fig. 4 a-c. EDS confirms the presence of Zn and Ag metals in the
prepared nanomaterial (Table 1, Fig. 4 d).
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Fig. 4. (a-c) FEG-SEM image of Zn-Ag@1-arginine Fe;04 (d)EDS profile of Zn-Ag@Lt-arginine Fe3O,,

Transmission electron microscopy (TEM)

Table 1 A TEM micrograph of Zn-Ag@ti-arginine Fe3O4 was acquired to

Elemental composition of the Zn-Ag @t-arginine Fe;0. obtain additional information on particle size and shape. The TEM im-
No. Element Weight% Atomic% ages of Zn-Ag @1-arginine Fe3O4 results confirm the formation of FesO4
1 Fe 92.20 93.54 nanoparticles. (Fig. 5, a-d) In XRD analysis an average particle size was
2 Zn 6.93 6.01 calculated and found to be 27 nm using the Scherrer equation.

3 Ag 0.87 0.46

Fig. 5. (a-d) TEM of Zn-Ag @1-arginine Fe30,.
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Scheme 2. Synthesis of 2-aryl-substituted benzimidazoles catalyzed by Zn-Ag @1-arginine Fe30y4,

X-ray photoelectron spectra

The results of the XPS measurements are shown in Fig. 6. After
getting an idea about the elemental profile the high-resolution spectra of
Ag, C, Fe, N, O and Zn are shown in the plot. The peaks for both Ag 3ds,2
and Ag 3ds/» appeared in spectra with a peak separation of 5.9 eV
indicating the formation of metallic silver [55,56]. The XPS peak of C1 s
is characterized with the peak at its usual position, additionally, the
peak at around 288 eV is indicative of the presence of functionalized
carbon. The XPS spectra of Fe has been characterized with two peaks Fe
2ps,2 and Fe 2p; s, additionally, a satellite peak has been observed at
around 719 eV. In the O 1s spectra, the peak can be seen with a hump at
532 eV, which is indicative of the oxygen present as C=0. The XPS
peaks for N and Zn are observed at their usual position. The peaks of
both Zn 2p; /5 and Zn 2p3/, appeared in spectra with bonding energies
difference of 23.15 eV suggesting + 2 oxidation state of zinc [56,57].

Catalytic activity studies:

Initially, in order to explore the applicability of Zn-Ag@t-arginine
Fe3Oy4 catalyst, the model reaction of o-phenylenediamine 1 and alde-
hyde 2 (1.0 mmol each) for the synthesis of benzimidazoles 3 (Scheme
2) was carried out. In case of heterogeneous catalyzed reactions, catalyst
concentration is one of the most important factors and hence, we have
screened the amount of catalyst required for the maximum yield of the
product. It is noteworthy that, in the absence of a catalyst no significant
product formation was observed even after an extended reaction time of
60 min (Table 2, entry 1). In presence of Zn-Ag @i-arginine Fe3O4
catalyst, 5 mol % amount was found to give 96 % yield of the desired

product as compared to 2 mol% (Table 2, entries 2-3). Further, an in-
crease of catalyst amount from 5 to 20 mol% shows a slight decrease in
catalytic activity from 96 to 95 % yield of the product (Table 2, entries
4-5).

The effect of the temperature study revealed that product yield
significantly increases when temperature increases from room

Table 2
Effect of various reaction conditions on the synthesis of 2-aryl-substituted
benzimidazoles™

Entry  Catalyst (mol Solvent Temp. Time (min.)  Yield®(%)
%) Q)
Effect of catalyst loading
1 - EtOH 65 60 20
2 2 EtOH 65 60 89
3 5 EtOH 65 30 96
4 10 EtOH 65 30 95
5 20 EtOH 65 30 95
Effect of temperature
6 5 EtOH r.t. 60 45
7 5 EtOH 45 60 68
8 5 EtOH 65 30 96
Effect of solvents
9 5 solvent free 65 30 80
10 5 acetonitrile 65 30 56
11 5 CH,Cl, Reflux 60 40
12 5 water 65 60 60
13 5 EtOAC 65 90 70

# Reaction conditions: benzaldehyde (1 mmol), o-phenyldiamine (1 mmol),
solvent 5 mL, catalyst mol % (w.r.t. benzaldehyde), ®Isolated yield.
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Table 3
Reaction between various aldehydes and o-phenyldiamine catalyzed by Zn-
Ag@1-arginine Fe304™

Entry R Product Time (min) Yieldb(%)
1 H 3a 25 96
2 4-CHj3 3b 40 96
3 4-Cl 3c 20 98
4 4-Br 3d 30 95
5 4-F 3e 25 94
6 2-OH 3f 30 92
7 4-OH 3g 25 97
8 2-0CH3 3h 30 93
9 4-OCH3 3i 35 91
10 3-NO, 3j 30 95
11 4-NO, 3k 20 98
12 -C4H4 31 45 91

? Reaction conditions: aldehyde (1 mmol), o-phenyldiamine (1 mmol),
ethanol- 5 mL, temp-65 °C, catalyst — 5 mol %, (w.r.t. aldehyde),blsolated yield.

temperature to 65 °C (Table 2, entries 6-8). The effect of the reaction
medium was also evaluated with solvents such as acetonitrile, CH5Cls,
water, and EtOAc (Table 2, entries 10-13). Under solvent-free condi-
tions, a good amount of product yield was obtained (Table 2, entry 9),
whereas ethanol mediated reaction provided 96 % yield within 30 min.
of reaction time (Table 2, entry 3).

To study the wide applicability of Zn-Ag@t-arginine Fe304, we have
carried out a substrate study using structurally varied aldehydes. The
catalyst afforded good to moderate product yields for both electrons
donating (-CH3 —OH -OCHj3, -C4H,) and electron withdrawing (-CL, -Br,
—NO,) substituents (Table 3, entries 1-12). In all cases, the reaction
smoothly took place under optimized reaction conditions.

The applicability of the prepared catalyst was further explored for
the synthesis of pyrimidines 7 by taking a mixture of aldehyde 4 (1
mmol), urea 5 (1 mmol), and ethyl acetoacetate 6 (1 mmol), in presence
of Zn-Ag@tr-arginine (Scheme 3). In the broad optimization study, the
amount of catalyst was tested for the model reaction. In absence of a
catalyst, no significant product formation was observed under the same
set of conditions even after an extended reaction time of 90 min (Table 4,
entry 1). An increase in catalyst loading from 2 to 5 mol % enhanced the
product yield from 75 to 98 % (Table 4, entries 2-3). Further, an in-
crease in catalyst loading had no remarkable effect on product yield
(Table 4,entries 4-5). Thus 5 mol % of catalyst loading was selected as
the optimum concentration for further studies (Table 4, entry 3). Simi-
larly, temperature dependence was found for the model reaction, the
optimum results were found at 45 °C in comparison to other tempera-
tures evaluated (Table 4, entries 6-8).

The effect of solvents has been screened by using toluene,
dichloromethane, water, and ethyl acetate (Table 4, entries 10-13).
Interestingly in solvent free conditions, a moderate yield of 65 % was
obtained for the model reaction (Table 4, entry 9). In ethanol mediated
reaction highest 98 % yield of the desired product was furnished within
25 min of reaction time (Table 4, entry 3).

To check the versatility of the Zn-Ag@:r-arginine Fe3O4, we have
shown a wide substrate scope by using structurally diverse groups on
aldehydes. The catalyst afforded a good to moderate product yield for
both electrons donating (-CH3 —OCH3) and electron withdrawing (-Cl,

o o o] o] HN
)k . )}\ Zn-Ag (@L-arginine Fe;04 ‘
—_—
R H  HN NH, © o N EmmlisC .
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—NOy) substituents on benzaldehyde (Table 5, entries 1-7). The reaction
between, thiophene-2-carboxaldehyde, urea, and ethylacetoacetate also
provided 91 % yield of the product within 45 min of reaction time
(Table 5, entry 8). However, in most cases, benzaldehydes containing
electron withdrawing groups took a long time to complete the reaction.

Based on the results of these experiments, a plausible reaction
pathway for the synthesis of benzimidazoles involves the formation of
imine (c) in the first step via condensation of o-phenyldiamine (a) in
presence of electron-deficient carbonyl carbon of aldehyde (b) activated
by the silver metal sites [46] of Zn-Ag@ti-arginine Fe3O4 with the
removal of one HyO molecule (Scheme 4). Furtherimine intermediate
undergoes the ring closure by attachment of a nitrogen atom lone pair to
Lewis acid sites of the catalyst (ZnO) to form unstable benzimidazoline
(d) [24].Then, two hydrogen atoms were removed in the presence of
silver metal from the catalysts and finally, benzimidazole derivatives (e)
were prepared [58]. However, further study is needed to support the

Table 4
Effect of various reaction conditions on the synthesis of pyrimidines™
Entry  Catalyst (mol Solvent Temp. Time Yield®(%)
%) “Q) (min.)
Effect of catalyst loading
1 - EtOH 45 90 34
2 2 EtOH 45 45 75
3 5 EtOH 45 25 98
4 10 EtOH 45 30 98
5 20 EtOH 45 30 98
Effect of temperature
6 5 EtOH r.t. 30 42
7 5 EtOH 45 25 98
8 5 EtOH 65 30 96
Effect of solvents
9 5 solvent 45 25 65
free
10 5 toluene 45 60 85
11 5 CH,Cl, Reflux 80 70
12 5 water 45 40 65
13 5 EtOAc 45 140 89

# Reaction conditions: benzaldehyde (1 mmol), ethylacetoacetate (1 mmol),
urea (1 mmol), solvent- 5 mL, catalyst mol % (w.r.t. benzaldehyde), bIsolated
yield.

Table 5
Three component reaction between various benzaldehyde, ethylacetoacetate,
and urea catalyzed by Zn-Ag@r-arginine Fe304™

Entry R Product Time (min) Yield® (%)
1 Ce¢Hs 7a 30 98
2 4-CH3-CeHy 7b 40 96
3 2-Cl-CeHy4 7c 55 95
4 4-Cl-CgHy 7d 30 96
5 4-OCH3-CeH4 7e 45 97
6 3-NO2-CeHy 7f 60 93
7 4-NO,-CgHy4 78 40 95
8 C4H3S 7h 45 91

# Reaction conditions: aldehyde (1 mmol), ethylacetoacetate (1 mmol), urea
(1 mmol), ethanol- 5 mL, temp- 45 °C, catalyst — 5 mol %, (w.r.t. aldehyde),
bIsolated yield.

Scheme 3. Multicomponent synthesis of pyrimidines catalyzed by Zn-Ag@1r-arginine Fe3O,,
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Table 6
Comparison of the present work with some reported methods for the synthesis of
benzimidazoles.

No.  Catalyst and Conc. Time Yield Temperature  Reference
(%) (9]

1 Fe30,4@Si0,@ 13-20 88-94 100 °C 18
(CHy)3N " Mesls, min
(0.007 g for 1 mmol of
OPD)

2 Clay-supported 2h 62-82 120 °C 19
titanium catalyst,
(0.25 g for 1 mol of
OPD)

3 Lanthanum Chloride 2-4h 85-95 r.t 20
(10 mol %)

4 NaY Zeolite (100 mg 48 h 26-93 r.t. 21
for 0.0025 mol of OPD)

5 Ceric ammonium 1.5-3h 90-98 50 °C 22
nitrate/ polyethylene
glycol (5 mol %)

6 CoFey04 (5 mol%), 7-11 88-97 - 23
grinding min

7 Zn-Ag @i-arginine 20 -40 91-98 65 °C Present
Fe304(5 mol %,w.r.t. min work
aldehyde)

postulated reaction mechanism.

The possible reaction mechanism of pyrimidine synthesis catalyzed
by Zn-Ag@L-arginine Fe3O4 as a catalyst is depicted in Scheme 5. The
reaction between benzaldehyde (f) and urea (g) generates iminium
cation (h) via the addition of urea to electron-deficient carbonyl carbon
of aldehyde (b) activated by the silver metal sites [46] of the catalyst.
Subsequently, the addition of 1,3 dicarbonyl compound (i) with imi-
nium cation (h) to form (j), which on cyclization and dehydration forms
the corresponding product (k) in presence of Lewis acid sites of the
catalyst. Following the formation of the product, the catalyst is free to
participate in the next catalytic cycle [59]. However, further investi-
gation is required to confirm the proposed reaction mechanism and
synergetic effect of Ag and ZnO may play an important role in the
reaction.

The reusability of catalysts is an important factor in determining the
industry’s potential applications. The recyclability of the catalyst was
studied for five successive cycles for the synthesis of benzimidazoles and
pyrimidines (Fig. 7). During the investigation, it was observed that the
catalyst could be successfully separated and recycled by using a magnet
without diminishing any catalytic activity. These results reveal that the
given approach is effective and has several advantages over earlier
protocols.

The study was further extended to confirm the heterogeneous nature
of the catalyst by a hot filtration method. Both model reactions were
carried out using optimized reaction conditions and the reaction mass
was separated from the catalysts after 10 min of reaction time. The re-
action mass was subsequently agitated for further 60 min without

Results in Chemistry 4 (2022) 100655

Table 7
Comparison of the present work with some reported methods for the synthesis of
pyrimidines.

Sr. Catalyst and conc. Time Yield Temperature  Reference

No (%)

1 Magnetic core-shell 45-90 73-95  Hy0-Reflux 26
Carrageenan moss/ min.

Fe304(10 mg for 1
mmol of aldehyde)

2 Fe30,@C@0S03H 15-105 80-97 80°C 27
(8.1 mol%) min

3 TiCl3OTf-[Bmim]Cl 15-40 70-95 140 °C 28
(15 % mol) min

4 Iron (11I) Tosylate (5 25-43 629 70-125°C 29
mol%) h

5 Cp.TiCl, (0.1 mmol) 9h 12-93 70°C 30

6 Zn-Ag @1-arginine 30-60 91-98 45°C Present
Fe304(5 mol %w.r.t. min work
aldehyde)

catalysts, and no further product formation was noted, showing the
heterogeneous nature of the catalyst.

The current methodology for the synthesis of benzimidazole
(Table 6) and pyrimidine (Table 7) is compared with some of the re-
ported methods in the literature, and it is concluded that the present
protocol offered a valuable improvement over the existing techniques.

Conclusion:

In summary, we have developed a green and efficient protocol for the
synthesis of 2-aryl-substituted benzimidazoles and pyrimidines in
ethanol using a magnetically separable Zn-Ag@:1-arginine Fe3O4 cata-
lyst. The material shows remarkable activity tolerance for aldehydes
with both electron withdrawing and donating substituents present on
the aromatic compounds. The catalytic material can be easily retrieved
by using a magnet and reused without further treatment up to five
catalytic cycles without a remarkable decline in catalytic activity. The
protocol outperforms previous approaches due to its simple work-up
procedure, mild reaction conditions, magnetically separable material,
and reusability of the catalyst, which make the protocol more attractive
and a useful contribution to the present methodologies.
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