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Abstract:- A mild, simple, environmentally benign 

catalytic protocol for transforming epoxides (oxiranes) 

into their respective 1,3-dioxolanes. The different 

epoxides with ketones give exclusively 1,3-dioxolanes 

catalyzed by sulfated yttria-zirconia with moderate to 

good yields (A [3+2] cycloaddition approach). The GC 

and GC-MS analysis shown in most instances that the 

product obtained was exclusively 1,3-dioxolanes. The 

catalysts were characterized by using X-ray powder 

diffraction (XRD), EDAX, FTIR, Thermal methods, and 

n-butylamine potentiometric titration method. Simple 

work-up, mild process conditions, and solvent-free 

approach make the procedure superior to current 

techniques. 
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I. INTRODUCTION 

Dioxolane compounds are essential intermediates in 

various organic processes [1-3]. Alternatively, certain 

compounds containing 1,3-dioxolane units have 

physiological and biological properties [4-7]. In the case of 

aldehydes and ketones in carbohydrates and steroid 

chemistry, the form of 1,3-Dioxolane is often used as a 

moiety that protects a carbonyl group. Besides this, diols 

converted to dioxolanes are used in various spectroscopic 

and chromatographic techniques [8]. 

dioxolanes [23]. The substitution of "non-green" protocols 

with "green" protocols has industrial relevance to overcome 

environmental problems. Hence, a viable catalytic protocol 

that can address these drawbacks must be formulated. 

The surface-modified systems of metal and mixed 

metal oxides are extensively used as solid acid catalysts for 

various functional group transformations. Sulfated yttria- 

zirconia used as an efficient catalyst for the pericyclic 

reaction between a conjugated diene and the dienophile [24], 

synthesis of β-amino carbonyl compounds [25], protecting 

hydroxy, thiol and amino groups with carboxylic acids [26], 

synthesis N-Boc  protected amines [27] and 

alkoxycarbonylation of amines [28]. I herein report, the 

synthesis of 1,3-dioxolanes using a modified form of the 

yttria-zirconia system as a recyclable catalyst under neat 

conditions. 

To strengthen an environmentally sustainable 

framework for different organic transformations  [29-33], 

and the outcome obtained for ring opening of oxiranes with 

nucleophiles [34] encourage exploring surface-modified 

yttria-zirconia system for acetalization of ketones using 

oxiranes (Scheme 1). Recyclability of catalysts,  neat 

reaction medium, mild reaction procedure, and 

environmentally friendly approach make the method more 

appealing and environmentally sustainable. 

Most often, dioxolanes (acetonides) were synthesized 
O 

Catalyst + 

H3C 

O 
CH3 

from the reaction of epoxides with compounds containing 

carbonyl moiety [9]. This transformation was investigated 
Ph H3C CH3 r.t. solvent free  O 

Ph 
by using BF3•OEt2  [10], Zeolite [11], HBF4,  [12],  graphene    

oxide    [13],    [Cp*Ir(NCMe)3]
2+    [14],    MoO3/SiO2  [15], 

Cu(OTf)2 [16], Chromium-pillared montmorillonite [17], 

Phosphomolybdic Acid [18], Iron oxide-pillared clay [19], 

Amberlyst-15 [20], heteropolyacids [21] and 2-methyl 

benzimidazole-zeolite complexes with d-block metal ions 

[22]. Boron trifluoride-etherate system was successfully  

used in the synthesis of 1,3-dioxolanes from carbonyl 

compounds with only epoxyethane and 2-Methyloxirane 

[10]. Besides, 1,3-dioxolanes can be synthesized from diols 

with carbonyl compound using an acid catalyst and 

azeotropic water extraction conditions. The process is 

restricted to the carbonyl compounds for both thermal and 

chemical stability to water under reflux conditions. 

However, several other catalytic protocols developed more 

easily    and    conveniently    by    converting    epoxides   to 

Scheme 1: Synthesis of 1,3-dioxolanes from epoxide with 
carbonyl compounds. 

II. MATERIALS AND METHODS 

A. Catalyst preparation 

Sulfated yttria-zirconia catalysts with varying quantities 

of yttria loading (4–24 mol.%), were synthesized using co- 

precipitation followed by the impregnation method [24, 34]. 

B. A typical procedure for the synthesis of dioxolanes 

To a mixture of 2-phenyloxirane (240 mg) and 2- 

propanone (116 mg), catalyst (24 mg, 10 (wt%) w.r.t. 2- 

phenyloxirane) was added in 10 mL round bottom flask. For 

the appropriate time and temperature, the reaction mass has 

been stirred. During workup, the catalyst was retrieved via 

O 
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filtration by adding ethyl acetate (5 mL) as a solvent and 

concentrated to dryness. The progress of the reaction was 

investigated by using TLC and GC (Thermofisher GC-1000 

equipped with a capillary column (30 m × 0.32 mm ID-0.25 

μm BP-10) with an FID detector and high purity nitrogen as 

the carrier gas.) All the products obtained and discussed in 

this work have been previously reported in the literature and 

selected compounds characterized by using of Gas 

chromatography-Mass spectroscopy (Shimadzu QP-2010, 

E.I. mode with high purity helium as carrier gas). 

2,2-Dimethyl-4-phenyl-1,3-dioxolane (Table 2, entry 

1);GC-MS (Electron Impact, 70 eV), m/z (%) = 178 (1 %) 

[M+], 163 (35 %), 148 (5 %), 133 (2 %), 120 (25 %), 103 (8 

%), 91 (19 %), 77 (9 %), 72 (65 %), 65 (8 %), 52 (7 %), 48 

(100 %). 

2-Phenyl-1,4-dioxaspiro[4.5] decane (Table 2, entry  

4); GC-MS (Electron Impact, 70 eV), m/z (%) =  218 (70 %) 

[M+], 189 (25%), 175 (100 %), 162 (10 %), 120 (30 %), 104 

(100 %), 91 (50 %). 

III. RESULTS AND DISCUSSION 

Initially, we studied, the influence of various catalysts 

for the synthesis of 1,3-dioxolanes at an ambient  

temperature (Table 1). The reaction conducted without 

catalysts does not proceed even after a protracted 5 h 

reaction time for the model reaction of phenyloxirane with 2-

propanone (Table 1, entry 1). The reaction of epoxides with 

ketones was further investigated in the presence of a 

catalytic amount (10 wt. %) of different catalysts and their 

surface-modified counterparts. No product was observed 

with ZrO2 alone, whereas mixed metal oxide of 

(Y0.16Zr0.84O2) gave 30 % yield and sulfated zirconia 

provided only 34% yield of the 1,3-dioxolanes (Table 1, 

entries 2-4). In the present investigation, the amount of 

yttrium present in the catalysts shows a significant effect on 

the catalytic activity. The acidity values increase from (1.23 

to 4.19 mmol. g-1), whichreveals good agreement with 

catalytic activities for a model reaction (Table 1, entries 5- 

10). The highest catalytic activity observed for SO 2- 

/Y0.16Zr0.84O2 (Table 1, entry 8) was due to the highest total 

acid sites and the initial electrode potential (Ei). The 

measurement of total acid sites and strength was carried out 

using the potentiometric titration method [35]. 

Table 1: Study of catalytic activity for the conversion of epoxides to acetonidesa 

Entry Catalyst Acidity (mmol/g)b Ei (mV)c Yield(%)d 

1e - - - - 

2e ZrO2 0.80 55 - 

3 Y0.16Zr0.84O2 0.90 91 30 

4 SO4
2-/ZrO2 2.07 168 34 

5 SO4
2-/Y0.04Zr0.96O2 1.23 148 47 

6 SO4
2-/Y0.08Zr0.92O2 1.64 195 55 

7 SO4
2-/Y0.12Zr0.88O2 1.93 310 78 

8 SO4
2-/Y0.16Zr0.84O2 4.19 530 95 

9 SO4
2-/Y0.20Zr0.80O2 2.91 330 67 

10 SO4
2-/Y0.24Zr0.76O2 2.65 248 50 

aReaction conditions: phenyloxirane (2 mmol), 2-propanone (2 mmol), solvent free, catalyst (24 mg, 10 wt%), solvent free, 2.0 h, 
Reaction temperature- r.t (32°C), bpotentiometric titration method, cEi- Inital electrode potential (mV), dIsolated yield, eReaction 

time- 5 h. 

To generalize the methodology, it was initially 

established for the reaction of 2-phenyloxirane with various 

substrates, such as 2-propanone, 1-phenylethanone, 2- 

butanone, and cyclohexanone, provided 1a-4a products with 

84-95% yields (Table 2, entries 1-4). 

Sterically hindered 7-oxabicyclo (4.1.0) heptane was 

found to react sluggishly with 2-propanone and cyclohexanone 

were provide comparatively lower yields of 5a-6a (Table 2, 

entries 5-6). Similarly, the reaction of 2-(chloromethyl) 

oxirane with various ketones also smoothly took place with 

good yields of 7a-9a (Table 2, entries 7-9). The reaction 

between 1,2-epoxy-3-phenoxypropane with 2-propanone also 

smoothly took place provided 88% yield of 10a (Table 2, entry 

10). We have also noted that the substituents attached to 

epoxide and ketones produce a negligible influence on the 

yield of the products (Table 2, entries 1-10). 

The reusability of the catalysts is a crucial aspect that 

decides the applicability of the catalysts system for industries. 

We have also executed the recyclability study of catalysts for 

the reaction of phenyloxirane (20 mmol) with 2-propanone (20 

mmol). The catalyst was washed with propanone after 

separation from the reaction mass and dried for 3 h. in an oven 

at elevated 120 °C temperature before the succeeding catalytic 

run. Under experimental conditions, sulfated yttria-zirconia 

was completely recoverable up to five successive cycles and 

there was no noticeable loss in its catalytic activity (Figure 1). 
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To confirm the heterogeneous nature of the catalyst and to test 
the stability of surface sulfate ions, a leaching experiment was 

carried out. The catalyst was retrieved after 1 h. reaction time 

via filtration by adding ethyl acetate (5 mL), and the further 

reaction was continued without any catalyst. There was no 
increase in yield even after 5 h reaction time, indicating that no 

leaching of catalyst was involved. 

 

 
Fig. 1: Reusability study of SO4

2-/Y0.16Zr0.84O2 forthe synthesis of dioxolanes. 

IV. CONCLUSIONS 

Sulfated yttria-zirconia as surface modified catalysts 

were successfully intended for the synthesis of 1,3-dioxolanes 

under solvent free conditions. The catalyst shows remarkable 

activity tolerance when using structurally varied oxiranes and 

carbonyl compounds for the synthesis of acetonides. During 

the study, it was observed that the catalyst was retrieved 

simply by filtration with retention of catalytic activity for five 

sequential cycles. 

Table 2: Sulphated yttria-zirconia catalyzed the synthesis of 1,3-dioxolanesa 

Entry Epoxide Ketone 1,3-dioxolane 
Yield
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aReaction conditions: epoxide (3 mmol), ketone (3 mmol), SO4
2-/Y0.16Zr0.84O2:10 wt% of epoxide, temp. - r.t. (32 °C), time- 2 h, solvent 

free, bIsolated yield. 
 

Among the several catalysts and compositions studied, 

SO4
2-/Y0.16Zr0.84O2 was found to be the best in terms of 

catalytic activity. The simple recovery process of catalyst, 

mild reaction conditions, recyclability of the catalysts and 
solvent-free approach makes the procedure preferable to the 

currently existing methods. 
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